scholarly journals Short-lived intra-oceanic arc-trench system in the North Qaidam belt (NW China) reveals complex evolution of the Proto-Tethyan Ocean

Author(s):  
Changlei Fu ◽  
Zhen Yan ◽  
Jonathan C. Aitchison ◽  
Wenjiao Xiao ◽  
Solomon Buckman ◽  
...  

Recognition of any intra-oceanic arc-trench system (IOAS) could provide invaluable information on the tectonic framework and geodynamic evolution of the vanished ocean basin. The Tanjianshan Complex and mafic-ultramafic rocks along the North Qaidam ultra-high pressure metamorphic belt in NW China record the subduction process of the Proto-Tethyan Ocean. Four lithotectonic units, including island arc, ophiolite, forearc basin, and accretionary complex, are recognized based on detailed field investigation. They rest on the northern margin of the Qaidam block and occur as allochthons in fault contact with underlying high-grade metamorphic rocks. The ophiolite unit mainly consists of ultramafic rocks, 527−506 Ma gabbro, 515−506 Ma plagiogranite, dolerite, and massive lava. High-Cr spinels in serpentinite, dolerite with forearc basalt affinity, and boninitic lava collectively indicate a forearc setting. The accretionary complex, exposed to the south of the ophiolite complex and island arc, is highly disrupted and contains repeated slices of basalt, 495−486 Ma tuff, chert, limestone, and mélange. Tuffs with positive zircon εHf(t) values indicate derivation from a nearby juvenile island arc. These lithotectonic units, as well as the back-arc basin, are interpreted to constitute a Cambrian IOAS that formed during the northward subduction of the Proto-Tethyan Ocean. Combined with regional geology, we propose a new geodynamic model involving short-lived Mariana-type subduction and prolonged Andean-type subduction to account for the complex evolution of the Proto-Tethyan Ocean. The reconstruction of a relatively complete IOAS from the North Qaidam belt not only reveals a systematic evolution of intra-oceanic subduction but also advances our understanding of the subduction and accretion history of the Proto-Tethyan Ocean.

Lithos ◽  
2020 ◽  
Vol 378-379 ◽  
pp. 105794
Author(s):  
Shixiang Yang ◽  
Li Su ◽  
Shuguang Song ◽  
Mark B. Allen ◽  
Di Feng ◽  
...  

1984 ◽  
Vol 121 (6) ◽  
pp. 599-614 ◽  
Author(s):  
Wang Hongzhen ◽  
Qiao Xiufu

AbstractThe time span of the Proterozoic is taken as from 2600 to 600 Ma with subdivision boundaries at 1850 and 1050 Ma respectively, as 2600 Ma seems more appropriate for the initial Proterozoic in China, Siberia and parts of Gondwanaland, and 600 Ma is an inferred age of the Precambrian–Cambrian boundary based on recent study of the Yangtze Gorge section. The Proterozoic of China includes the Lower Proterozoic Wutaian and Hutuo-an, the Middle Proterozoic Changchengian and Jixianian and the Upper Proterozoic Qingbaikou-an and Sinian.Based mainly on tectono-sedimentary types and associations, seven stratigraphic super-regions are recognized in the Proterozoic of China and stratigraphic successions of various representative regions are shown in two tables, one for the Sinian and another for the Pre-Sinian Proterozoic. Palaeogeographic outline of the main super-regions and chronometric limit of the principal stratigraphic units are briefly discussed. Three types of stable Sinian successions are distinguished, the Yangtze type, the Quruktagh type and the Jiaoliao type, which are correlated mainly on the basis of tillite horizons and of sabelliditids and the Ediacara type of fossils. Semi-stable and mobile types of Sinian deposits in Southeast China are also briefly mentioned.The Proterozoic tectonic units of China and the nature of their boundaries are shown on a sketch map showing basement structures. Crustal sectors of continental nature are designated as continental tectonic domains, while broad and complicated crustal sectors of mainly transitional and partly oceanic nature may be called continental margin tectonic domains. The boundaries between these domains are usually the principal crustal consumption zones. On this basis, three continental domains, the North China, the South China and the Southern (Gondwana), and two continental margin domains, the Northern (Siberian–Mongolian) and the East China, are distinguished. Platforms, continental nuclei, massifs and uplifts are used to denote subdivisions within the tectonic domains. The development of aulacogens is an outstanding feature in the continental domains, especially in the Middle Proterozoic. Aulacogens may be classified into an intra-platform type and a platform margin type. Early Proterozoic aulacogens are usually brachy-axial and intermittent, and show conspicuous deformation at closure, much like a geosyncline. Thirteen aulacogens of different types are shown on the sketch map.The boundary nature of continental domains is analysed in terms of island arcs and marginal seas, and also of emplacement of granite rocks in border parts. The North China Domain was basically consolidated at around 1850 Ma and has a passive northern margin stretching from Nei Mongol to Central Tianshan, but the southern margin was active and was twice subducted by the Qinling marine realm at 1700 and 1000 Ma approximately. The Yangtze Platform was not completely consolidated until 1050 Ma BP but has a core older than 1850 Ma. A broad continental margin terrain had developed in the Jiangnan region and farther to the southeast in the Middle and Late Proterozoic. At least two island arc belts with interarc basins, an inner Fanjingshan and an outer Sibao, may be discerned in the Middle Proterozoic, and a Late Proterozoic island arc zone over 1000 km in length was developed along the southern margin of the Jiangnan Uplift, represented by the Banxi Group and equivalent strata. This kind of broad complicated continental margin tract which has a long development history may be called the open type or the West Pacific type.


Sign in / Sign up

Export Citation Format

Share Document