scholarly journals Supplemental Material: Detrital zircon geochronology and Hf isotope geochemistry of Mesozoic sedimentary basins in south-central Alaska: Insights into regional sediment transport, basin development, and tectonics along the NW Cordilleran margin

2020 ◽  
Author(s):  
C.R. Fasulo ◽  
et al.

<div>Supplemental Data. (A) U-Pb analytical results from detrital zircons from the Nutzotin, Wrangell Mountains, and Wellesly basins. (B) Lu-Hf analytical results from detrital zircons from the Nutzotin and Wellesly basins. <br></div>

2020 ◽  
Author(s):  
C.R. Fasulo ◽  
et al.

<div>Supplemental Data. (A) U-Pb analytical results from detrital zircons from the Nutzotin, Wrangell Mountains, and Wellesly basins. (B) Lu-Hf analytical results from detrital zircons from the Nutzotin and Wellesly basins. <br></div>


2020 ◽  
Author(s):  
C.R. Fasulo ◽  
et al.

Supplemental Figure S1. Normalized distribution plot of detrital zircon ages from the Kahiltna assemblage of the central Alaska Range (Hampton et al., 2010), the Wellesly basin (this study), and the Kahiltna assemblage of the northwestern Talkeetna Mountains (Hampton et al., 2010). Note that the detrital zircon age distribution of ages older than 500 Ma has 10× vertical exaggeration.


2020 ◽  
Author(s):  
C.R. Fasulo ◽  
et al.

Supplemental Figure S1. Normalized distribution plot of detrital zircon ages from the Kahiltna assemblage of the central Alaska Range (Hampton et al., 2010), the Wellesly basin (this study), and the Kahiltna assemblage of the northwestern Talkeetna Mountains (Hampton et al., 2010). Note that the detrital zircon age distribution of ages older than 500 Ma has 10× vertical exaggeration.


Geosphere ◽  
2021 ◽  
Author(s):  
Cooper R. Fasulo ◽  
Kenneth D. Ridgway

New and previously published detrital zircon U-Pb ages from sediment in major rivers of south- central Alaska archive several major episodes of magmatism associated with the tectonic growth of this convergent margin. Analysis of detrital zircons from major trunk rivers of the Tanana, Matanuska-Susitna, and Copper River watersheds (N = 40, n = 4870) documents major &lt;250 Ma age populations that are characteristic of the main phases of Mesozoic and Paleogene magmatism in the region as documented from limited U-Pb ages of igneous rocks. Key points from our detrital record include: (1) Major magmatic episodes occurred at 170, 150, 118, 95, 72, 58, and 36 Ma. The overall pattern of these ages suggests that felsic magmatism was episodic with periodicity ranging between ~14 and 32 m.y. with an average of ~22 m.y. (2) Magmatism in south-central Alaska shows similar age trends with both the Coast Mountains batholith and the along-strike Alaska Peninsula forearc basin strata, demonstrating a spatial and temporal relationship of felsic magmatism along the entire northern Cordilleran margin. (3) Topography and zircon fertility appear to influence the presence and/or absence of detrital zircon populations in individual watersheds. Results from this study indicate that regionally integrated detrital zircon populations from modern trunk rivers are faithful recorders of Mesozoic and Paleogene magmatic events along a convergent margin, but there appears to be a lag time for major rivers to record Neogene and ongoing magmatic events.


1998 ◽  
Vol 35 (12) ◽  
pp. 1380-1401 ◽  
Author(s):  
George E Gehrels ◽  
Gerald M Ross

U-Pb ages have been determined on 250 detrital zircon grains from Neoproterozoic through Permian miogeoclinal strata in British Columbia and Alberta. Most of the grains in these strata are >1.75 Ga and are interpreted to have been derived from nearby basement provinces (although most grains were probably cycled though one or more sedimentary units prior to final deposition). Important exceptions are Ordovician sandstones that contain grains derived from the Peace River arch, and upper Paleozoic strata with detrital zircons derived from the Franklinian orogen, Salmon River arch (northwestern U.S.A.), and (or) Grenville orogen. These provenance changes resulted in average detrital zircon ages that become progressively younger with time, and may also be reflected by previously reported shifts in the Nd isotopic signature of miogeoclinal strata. In addition to the grains that have identifiable sources, grains of ~1030, ~1053, 1750-1774, and 2344-2464 Ma are common in our samples, but igneous rocks of these ages have not been recognized in the western Canadian Shield. We speculate that unrecognized plutons of these ages may be present beneath strata of the western Canada sedimentary basin. Collectively, our data provide a record of the ages of detrital zircons that accumulated along the Canadian Cordilleran margin during much of Paleozoic time. Comparisons between this reference and the ages of detrital zircons in strata of potentially displaced outboard terranes may help reconstruct the paleogeography and accretionary history of the Cordilleran orogen.


2009 ◽  
Author(s):  
Dwight Bradley ◽  
Peter J. Haeussler ◽  
Paul O'Sullivan ◽  
Rich Friedman ◽  
Alison Till ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document