scholarly journals Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: One Great Arc of the Caribbean (?)

Geosphere ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 468-493 ◽  
Author(s):  
James E. Wright ◽  
Sandra J. Wyld
2021 ◽  
Author(s):  
Marzieh Baes ◽  
Stephan Sobolev ◽  
Taras Gerya ◽  
Robert Stern ◽  
Sascha Brune

<p>Subduction zones are key components of plate tectonics and plate tectonics could not begin until the first subduction zone formed. Plume-induced subduction initiation, which has been proposed as triggering the beginning of plate tectonics (Gerya et al., 2015), is one of the few scenarios that can break the lithosphere and recycle a stagnant lid without requiring any pre-existing weak zones. So far, two natural examples of plume-induced subduction initiation have been recognized. The first was found in southern and western margins of the Caribbean Plate (Whattam and Stern 2014). Initiation of the Cascadia subduction zone in Eocene times has been proposed to be the second example of plume-induced subduction initiation (Stern and Dumitru, 2019).</p><p>The focus of previous studies was to inspect plume-lithosphere interaction either for the case of stationary lithosphere (e.g., Gerya et al., 2015) or for moving lithosphere without considering the effect of lithospheric magmatic weakening above the plume head (e.g., Moore et al., 1998). In present study we investigate the response of moving oceanic lithosphere to the arrival of a rising mantle plume head including the effect of magmatic lithospheric weakening. We used 3D numerical thermo-mechanical modeling. Using I3ELVIS code, which is based on finite difference staggered grid and marker-in-cell with an efficient OpenMP multigrid solver (Gerya, 2010), we show that plate motion may affect the plume-induced subduction initiation only if a moderate size plume head (with a radius of 140 km in our experiments) impinges on a young but subductable lithosphere (with the age of 20 Myr). Outcomes indicate that lithospheric strength and plume buoyancy are key parameters in penetration of the plume and subduction initiation and that plate speed has a minor effect. We propose that eastward motion of the Farallon plate in Late Cretaceous time could play a key role in forming new subduction zones along the western and southern margin of the Caribbean plate.</p><p> </p><p>References:</p><p>Gerya, T., 2010, Introduction to Numerical Geodynamic Modelling.. Cambridge University Press.</p><p>Gerya, T.V., Stern, R.J., Baes, M., Sobolev, S.V. and Whattam, S.A., 2015. Plume-induced subduction initiation triggered Plate Tectonics on Earth. Nature, 527, 221–225.</p><p>Moore, W. B., Schubert, G. and Tackley, P., 1998, Three-dimensional simulations of plume-lithosphere interaction at the Hawaiian swell. Science, 279, 1008-1011.</p><p>Stern, R.J., and Dumitru, T.A., 2019, Eocene initiation of the Cascadia subduction zone: A second example of plume-induced subduction initiation? Geosphere, v. 15, 659-681.</p><p>Whattam, S.A. and Stern, R.J., 2014. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27, doi: 10.1016/j.gr.2014.07.011.</p>


2017 ◽  
Vol 122 (5) ◽  
pp. 3953-3976 ◽  
Author(s):  
Marco Maffione ◽  
Douwe J. J. van Hinsbergen ◽  
Giovanni I. N. O. de Gelder ◽  
Freek C. van der Goes ◽  
Antony Morris

2019 ◽  
Vol 132 (5-6) ◽  
pp. 1083-1105 ◽  
Author(s):  
Hadi Shafaii Moghadam ◽  
R.J. Stern ◽  
W.L. Griffin ◽  
M.Z. Khedr ◽  
M. Kirchenbaur ◽  
...  

Abstract How new subduction zones form is an ongoing scientific question with key implications for our understanding of how this process influences the behavior of the overriding plate. Here we focus on the effects of a Late Cretaceous subduction-initiation (SI) event in Iran and show how SI caused enough extension to open a back-arc basin in NE Iran. The Late Cretaceous Torbat-e-Heydarieh ophiolite (THO) is well exposed as part of the Sabzevar-Torbat-e-Heydarieh ophiolite belt. It is dominated by mantle peridotite, with a thin crustal sequence. The THO mantle sequence consists of harzburgite, clinopyroxene-harzburgite, plagioclase lherzolite, impregnated lherzolite, and dunite. Spinel in THO mantle peridotites show variable Cr# (10–63), similar to both abyssal and fore-arc peridotites. The igneous rocks (gabbros and dikes intruding mantle peridotite, pillowed and massive lavas, amphibole gabbros, plagiogranites and associated diorites, and diabase dikes) display rare earth element patterns similar to MORB, arc tholeiite and back-arc basin basalt. Zircons from six samples, including plagiogranites and dikes within mantle peridotite, yield U-Pb ages of ca. 99–92 Ma, indicating that the THO formed during the Late Cretaceous and was magmatically active for ∼7 m.y. THO igneous rocks have variable εNd(t) of +5.7 to +8.2 and εHf(t) ranging from +14.9 to +21.5; zircons have εHf(t) of +8.1 to +18.5. These isotopic compositions indicate that the THO rocks were derived from an isotopically depleted mantle source similar to that of the Indian Ocean, which was slightly affected by the recycling of subducted sediments. We conclude that the THO and other Sabzevar-Torbat-e-Heydarieh ophiolites formed in a back-arc basin well to the north of the Late Cretaceous fore-arc, now represented by the Zagros ophiolites, testifying that a broad region of Iran was affected by upper-plate extension accompanying Late Cretaceous subduction initiation.


2018 ◽  
Vol 499 ◽  
pp. 62-73 ◽  
Author(s):  
David M. Buchs ◽  
Andrew C. Kerr ◽  
Joanna C. Brims ◽  
Juan Pablo Zapata-Villada ◽  
Tomás Correa-Restrepo ◽  
...  

2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.


Sign in / Sign up

Export Citation Format

Share Document