Mesozoic Tectonic Setting of SE Sundaland After Magmatism and Suture Evidences in JS-1 Ridge Area

2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.

2021 ◽  
pp. 1-24
Author(s):  
Petros Koutsovitis ◽  
Konstantinos Soukis ◽  
Panagiotis Voudouris ◽  
Stylianos Lozios ◽  
Theodoros Ntaflos ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


2016 ◽  
Vol 6 (4) ◽  
pp. 5-35 ◽  
Author(s):  
Alejandro Silva Arias ◽  
Liliana Andrea Paez Acuña ◽  
Daniel Rincón Martínez ◽  
Javier Alfonso Tamara Guevara ◽  
Pedro David Gomez Gutierrez ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Qiang Fu ◽  
Jose Bienvenido Diez ◽  
Mike Pole ◽  
Manuel García Ávila ◽  
Zhong-Jian Liu ◽  
...  

The origin of angiosperms has been a long-standing botanical debate. The great diversity of angiosperms in the Early Cretaceous makes the Jurassic a promising period in which to anticipate the origins of the angiosperms. Here, based on observations of 264 specimens of 198 individual flowers preserved on 34 slabs in various states and orientations, from the South Xiangshan Formation (Early Jurassic) of China, we describe a fossil flower, Nanjinganthus dendrostyla gen. et sp. nov.. The large number of specimens and various preservations allow for an evidence-based reconstruction of the flower. From the evidence of the combination of an invaginated receptacle and ovarian roof, we infer that the seeds of Nanjinganthus were completely enclosed. Evidence of an actinomorphic flower with a dendroid style, cup-form receptacle, and angiospermy, is consistent with Nanjinganthus being a bona fide angiosperm from the Jurassic, an inference that we hope will re-invigorate research into angiosperm origins.


2004 ◽  
Vol 141 (5) ◽  
pp. 583-603 ◽  
Author(s):  
OSMAN PARLAK ◽  
VOLKER HÖCK ◽  
HÜSEYİN KOZLU ◽  
MICHEL DELALOYE

A number of Late Cretaceous ophiolitic bodies are located between the metamorphic massifs of the southeast Anatolian orogenic system. One of them, the Göksun ophiolite (northern Kahramanmaraş), which crops out in a tectonic window bounded by the Malatya metamorphic units on both the north and south, is located in the EW-trending nappe zone of the southeast Anatolian orogenic belt between Göksun and Afşin (northern Kahramanmaraş). It consists of ultramafic–mafic cumulates, isotropic gabbro, a sheeted dyke complex, plagiogranite, volcanic rocks and associated volcanosedimentary units. The ophiolitic rocks and the tectonically overlying Malatya–Keban metamorphic units were intruded by syn-collisional granitoids (∼ 85 Ma). The volcanic units are characterized by a wide spectrum of rocks ranging in composition from basalt to rhyolite. The sheeted dykes consist of diabase and microdiorite, whereas the isotropic gabbros consist of gabbro, diorite and quartzdiorite. The magmatic rocks in the Göksun ophiolite are part of a co-magmatic differentiated series of subalkaline tholeiites. Selective enrichment of some LIL elements (Rb, Ba, K, Sr and Th) and depletion of the HFS elements (Nb, Ta, Ti, Zr) relative to N-MORB are the main features of the upper crustal rocks. The presence of negative anomalies for Ta, Nb, Ti, the ratios of selected trace elements (Nb/Th, Th/Yb, Ta/Yb) and normalized REE patterns all are indicative of a subduction-related environment. All the geochemical evidence both from the volcanic rocks and the deeper levels (sheeted dykes and isotropic gabbro) show that the Göksun ophiolite formed during the mature stage of a suprasubduction zone (SSZ) tectonic setting in the southern branch of the Neotethyan ocean between the Malatya–Keban platform to the north and the Arabian platform to the south during Late Cretaceous times. Geological, geochronological and petrological data on the Göksun ophiolite and the Baskil magmatic arc suggest that there were two subduction zones, the first one dipping beneath the Malatya–Keban platform, generating the Baskil magmatic arc and the second one further south within the ocean basin, generating the Göksun ophiolite in a suprasubduction zone environment.


2020 ◽  
Vol 47 (3) ◽  
pp. 469
Author(s):  
Christian Creixell ◽  
Javier Fuentes ◽  
Hessel Bierma ◽  
Esteban Salazar

Cretaceous porphyry copper deposits of northern Chile (28º-29º30’ S) are genetically related with dacitic to dioritic porphyries and they represent a still poorly-explored target for Cu resources. The porphyries correspond to stocks distributed into two separated discontinuous NS trending belts of different age. The location of these porphyries is generally adjacent to orogen-parallel major fault systems that extend along the studied segment and also have a marked temporal relationship with deformation events registered along these structures. A first episode of Cu-bearing porphyry emplacement took place between 116 and 104 Ma (Mina Unión or Frontera, Cachiyuyo, Punta Colorada, Dos Amigos, Tricolor porphyries). These Early Cretaceous dacite to diorite porphyries are spatially associated with the eastern segments of the Atacama Fault System, which records sinistral transpression that started at 121 Ma producing ground uplift, consequent denudation and exhumation of the Early Cretaceous magmatic arc. This resulted in a change from marine to continental deposition with an angular unconformity in the site of the back-arc basin after of eastward migration of the deformation around 112-110 Ma. At the scale of the continental margin, this deformation is correlated with early stage of the Mochica Orogenic event described in Perú. A second episode of Cu-bearing porphyry emplacement occurred between 92 and 87 Ma (Elisa, Johana, Las Campanas and La Verde deposits), which are spatially and temporally associated with the regional-scale Las Cañas-El Torito reverse fault, active between 89 and 84 Ma, during the Peruvian Orogenic Phase. This fault up thrust to the west part of the Chañarcillo Group rocks (Lower Cretaceous) over the younger upper levels of the Cerrillos Formation (Upper Cretaceous). The integrated geological mapping and geochemical data of the Early to Late Cretaceous volcanic rocks indicates that both Early Cretaceous sinistral transpression and Late Cretaceous east-west compression were not significant in promote changes in magma genesis, except for slight changes in trace element ratios (increase in Th/Ta, Nb/Ta and La/Yb) suggesting that the Late Cretaceous deformation event produced only slightly increase in crustal thickness (>40 km), but far from being comparable to major Cenozoic orogenic phases, at least along the magmatic arc to back-arc domains in the study area. Finally, our study give insights about regional geological parameters that can be used as a first order guide for exploration of Cu resources along Cretaceous magmatic belts of northern Chile, where both Early and Late Cretaceous Cu-bearing porphyry intrusions are restricted to a large structural block bounded to the west and east by Cretaceous fault systems.


2017 ◽  
Author(s):  
Qiang Fu ◽  
José Bienvenido Diez ◽  
Mike Pole ◽  
Manuel García-Ávila ◽  
Zhong-Jian Liu ◽  
...  

AbstractThe origin of angiosperms has been the focus of intensive botanical debate for well over a century. The great diversity of angiosperms in the Early Cretaceous makes the Jurassic rather expected to elucidate the origin of angiosperm. Former reports of early angiosperms are frequently based on a single specimen, making many conclusions tentative. Here, based on observations of 284 individual flowers preserved on 28 slabs in various states and orientations, we describe a fossil flower, Nanjinganthus dendrostyla gen. et sp. nov., from the South Xiangshan Formation (Early Jurassic) of China. The large number of specimens and various preservations allows us to give an evidenced interpretation of the flower. The complete enclosure of ovules in Nanjinganthus is fulfilled by a combination of an invaginated and ovarian roof. Characterized by its actinomorphic flower with a dendroid style, cup-form receptacle, and angio-ovuly, Nanjinganthus is a bona fide angiosperm from the Jurassic. Nanjinganthus re-confirms the existence of Jurassic angiosperms and provides first-hand raw data for new analyses on the origin and history of angiosperms.


2019 ◽  
Vol 114 (7) ◽  
pp. 1285-1300 ◽  
Author(s):  
Okan Delibaş ◽  
Robert Moritz ◽  
David Selby ◽  
Deniz Göç ◽  
Mustafa Kemal Revan

Abstract Four porphyry Cu-Mo systems were investigated by Re-Os molybdenite geochronology to constrain their timing with respect to the geodynamic and magmatic evolution of the eastern Pontides, Turkey. Molybdenite from the Ispir-Ulutaş deposit yielded an Re-Os age of 131.0 ± 0.7 Ma, which is consistent with Early Cretaceous U-Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon ages of local calc-alkaline intrusions. It demonstrates that porphyry deposits were already formed during Early Cretaceous subduction of the Neotethys along the eastern Pontides, and that they can be correlated with porphyry Cu events in the adjacent Lesser Caucasus. Molybdenite Re-Os ages of 76.0 ± 0.4 and 75.7 ± 0.4 Ma at the Elbeyli prospect and 77.2 ± 1.0 Ma at the Emeksen prospect overlap with U-Pb LA-ICP-MS zircon ages of shoshonitic to high-K calc-alkaline intrusions in the region, which were emplaced during Late Cretaceous Neotethys subduction. A 50.7 ± 0.3 Ma molybdenite Re-Os age at the Güzelyayla deposit confirms porphyry Cu-Mo emplacement coeval with Eocene postcollisional, calc-alkaline adakitic magmatism of the eastern Pontides. An electron microprobe study of molybdenite samples, supplemented by data obtained during Re-Os dating, shows that the Eocene Güzelyayla deposit and the Late Cretaceous Emeksen prospect have the highest Re enrichment. Postcollisional melting of a thickened mafic lower continental crust and melting of a metasomatized lithospheric mantle with little to no interaction with upper crustal rocks may explain the Re enrichment at Güzelyayla and Emeksen, respectively.


1985 ◽  
Vol 22 (4) ◽  
pp. 525-537 ◽  
Author(s):  
Frederic H. Wilson ◽  
James G. Smith ◽  
Nora Shew

The results of more than 20 years of geochronological studies in the Yukon Crystalline Terrane in east-central Alaska and the western Yukon Territory suggest at least six igneous and thermal (metamorphic?) events. Plutonism during Mississippian, Early Jurassic, mid-Cretaceous, Late Cretaceous, and early Tertiary times is indicated. Evidence also indicates that Mississippian, Early Jurassic, late Early Cretaceous, and late Cretaceous thermal (metamorphic?) events have affected parts of the terrane. The western part of the terrane was affected by a significant regional metamorphic event in late Early Cretaceous time, followed by a terrane-wide mid-Cretaceous plutonic event. The pattern of K–Ar ages allows division of the terrane into domains, bounded by northeast-trending lineaments.


Author(s):  
Marc D. Norman ◽  
William P. Leeman ◽  
Stanley A. Mertzman

ABSTRACTCretaceous and Cainozoic granites and rhyolites in the northwestern U.S.A. provide a record of silicic magmatism related to diverse tectonic settings and large-scale variations in crustal structure. The Late Cretaceous Idaho Batholith is a tonalitic to granitic Cordilleran batholith that was produced during plate convergence. Rocks of the batholith tend to be sodic (Na2O > K2O), with fractionated HREE, negligible Eu anomalies, and high Sr contents, suggesting their generation from relatively mafic sources at a depth sufficient to stabilise garnet. In contrast, Neogene rhyolites of the Snake River Plain, which erupted in an extensional environment, are potassic (K2O > Na2O), with unfractionated HREE patterns, negative Eu anomalies, and low Sr contents, suggesting a shallower, more feldspathic source with abundant plagioclase. Eocene age volcanic and plutonic rocks have compositions transi- tional between those of the Cretaceous batholith and the Neogene rhyolites. These data are consistent with a progressively shallowing locus of silicic magma generation as the tectonic regime changed from convergence to extension.


Sign in / Sign up

Export Citation Format

Share Document