scholarly journals Supplemental Material: Petrogenesis of Ordovician granitoids in Western Kunlun, NW Tibetan Plateau: Insights into the evolution of the Proto-Tethys Ocean

2020 ◽  
Author(s):  
Peng Wang ◽  
Guochun Zhao ◽  
et al.

Table S1: Zircon U-Pb ages of igneous rocks in the Western Kunlun orogenic belt; Table S2: Results of whole-rock major- (wt%) and trace-element (ppm) data from the three intrusions; Table S3: Zircon U-Pb age of the three intrusions; Table S4: Zircon Hf isotope compositions of the three intrusions; Table S5: Whole-rock Sr-Nd-Pb isotope compositions of the three intrusions; Table S6: Representative analyses of feldspar, amphibole, and pyroxene from the Aqiang and Yutian intrusions; Table S7: Bulk partition coefficients used for trace-element modeling in Figure 14; Figure S1: CL images of zircons showing internal textures and ages of 206Pb/238U (Ma).

2020 ◽  
Author(s):  
Peng Wang ◽  
Guochun Zhao ◽  
et al.

Table S1: Zircon U-Pb ages of igneous rocks in the Western Kunlun orogenic belt; Table S2: Results of whole-rock major- (wt%) and trace-element (ppm) data from the three intrusions; Table S3: Zircon U-Pb age of the three intrusions; Table S4: Zircon Hf isotope compositions of the three intrusions; Table S5: Whole-rock Sr-Nd-Pb isotope compositions of the three intrusions; Table S6: Representative analyses of feldspar, amphibole, and pyroxene from the Aqiang and Yutian intrusions; Table S7: Bulk partition coefficients used for trace-element modeling in Figure 14; Figure S1: CL images of zircons showing internal textures and ages of 206Pb/238U (Ma).


2020 ◽  
Author(s):  
Wei Fang ◽  
Li-Qun Dai

Table S1: Major and trace element compositions of mafic igneous rocks from the southeastern North China Block; Table S2: Whole-rock Rb-Sr, Sm-Nd, and Lu-Hf isotope compositions of mafic igneous rocks from the southeastern North China Block; Table S3: LA-ICPMS zircon U-Pb isotope compositions of mafic igneous rocks from the southeastern North China Block; Table S4: Zircon LA-MC-ICPMS Lu-Hf and SIMS O isotopic compositions of mafic igneous rocks from the southeastern North China Block.


2020 ◽  
Author(s):  
Wei Fang ◽  
Li-Qun Dai

Table S1: Major and trace element compositions of mafic igneous rocks from the southeastern North China Block; Table S2: Whole-rock Rb-Sr, Sm-Nd, and Lu-Hf isotope compositions of mafic igneous rocks from the southeastern North China Block; Table S3: LA-ICPMS zircon U-Pb isotope compositions of mafic igneous rocks from the southeastern North China Block; Table S4: Zircon LA-MC-ICPMS Lu-Hf and SIMS O isotopic compositions of mafic igneous rocks from the southeastern North China Block.


Author(s):  
Qichao Zhang ◽  
Zhong-Hai Li ◽  
Zhenhan Wu ◽  
Xuanhua Chen ◽  
Ji’en Zhang ◽  
...  

The supra-subduction zone ophiolite or ophiolitic mélange formed in the forearc setting is generally considered to be a key geological record for subduction initiation (SI) with petrological characteristics comparable to the SI-related rock sequence from forearc basalt (FAB) to boninite in the Izu-Bonin-Mariana subduction zone. Nevertheless, the standard FAB and boninite are generally difficult to observe in the forearc rocks generated during SI. Yet, a typical rock sequence indicating the SI of the western Proto-Tethys Ocean is reported for the first time in the Qimanyute intra-oceanic forearc system in the western Kunlun Orogen, Northwest Tibetan Plateau. The magmatic compositions, which range from less to more high field strength element (HFSE)-depleted and large ion lithophile element (LILE)-enriched, are changing from oceanic plagiogranites (ca. 494 Ma) to forearc basalt-like gabbros (FAB-Gs, ca. 487 Ma), boninites, and subsequent Nb-enriched gabbros (NEGs, ca. 485 Ma), which are thus consistent with the Izu-Bonin-Mariana forearc rocks as well as the Troodos and Semail supra-subduction zone-type ophiolites. The geochemical data from the chemostratigraphic succession indicate a subduction initiation process from a depleted mid-oceanic-ridge (MORB)-type mantle source with no detectable subduction input to gradual increasing involvement of subduction-derived materials (fluid/melts and sediments). The new petrological, geochemical, and geochronological data, combined with the regional geology, indicate that the well-sustained FAB-like intrusive magmas with associated boninites could provide crucial evidence for SI and further reveal that the SI of the western Proto-Tethys Ocean occurred in the Late Cambrian (494−485 Ma).


2019 ◽  
Vol 132 (5-6) ◽  
pp. 955-976
Author(s):  
Jun Tan ◽  
Jun-Hao Wei ◽  
Shao-Qing Zhao ◽  
Yan-Jun Li ◽  
Yan Liu ◽  
...  

Abstract Recent research on Paleo-Tethys tectonics has identified a huge late Paleozoic to Mesozoic igneous belt that extends more than 2500 km in the northeast Tibetan Plateau. However, the magma genesis and evolution in this belt remains a subject of considerable debate. This paper presents a combination of zircon U-Pb ages, mineral compositions, major and trace element concentrations, and Sr-Nd-Hf isotopic data for the plutons across the Zhiduo arc belt that marks the site connecting different tectonic-magmatic units. The studied rocks from one quartz diorite, two granodiorite plutons, and their mafic enclaves define a continuous compositional evolution varying from high- to medium-K calc-alkaline gabbroic diorite to granodiorite. Laser ablation–inductively coupled plasma–mass spectroscopy U-Pb analyses of zircons from these three plutonic suites and one mafic enclave yield Late Triassic ages of 222–217 Ma, establishing that the mafic and felsic magmas were nearly coeval. All these rocks are featured by zoned hornblende and plagioclase with Mg- and Ca-rich mantles or oscillatory change in compositions. They exhibit high and variable MgO (up to 4.88–5.66 wt%), Cr, and Ni contents except that one granitoid pluton (Dangjiangrong) possesses high Co (up to 145.0 ppm). They are characterized by subduction-type trace element patterns, with prominent positive Rb, Th, Pb, and K anomalies and negative Ba, Nb, P, and Ti. Together with continuous and heterogeneous Sr-, Nd-, and zircon Hf-isotopic compositions, it suggests that these Late Triassic high-Mg diorites and associated granitoids were generated through magma mixing and fractional crystallization accompanied by chemical exchange. Taking into account the magmatic record from nearby regions, we suggest that double-sided subduction and rollback of the subducting Paleo-Tethys oceanic slab is the main mechanism to generate geochemically-varied magmatism in the northeast Tibetan Plateau, and eventually close the Paleo-Tethys Ocean during much of the Late Triassic.


2020 ◽  
Author(s):  
Wei Fang ◽  
Li-Qun Dai ◽  
et al.

Table S1: Major and trace element compositions of lamprophyres from the eastern North China Craton; Table S2: Whole-rock Sr, Nd, and Hf isotope compositions of lamprophyres from the eastern North China Craton; Table S3: LA-ICPMS Zircon U-Pb isotope compositions of lamprophyres from the eastern North China Craton; Table S4: Zircon LA-MC-ICPMS Lu-Hf isotope compositions of lamprophyres from the eastern North China Craton.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiao-Qiang Liu ◽  
Chuan-Lin Zhang ◽  
Haibo Zou ◽  
Qian Wang ◽  
Xiao-Shu Hao ◽  
...  

Abstract The Western Kunlun-Pamir-Karakorum (WKPK) at the northwestern Tibetan Plateau underwent long-term terrane accretion from the Paleozoic to the Cenozoic. Within this time span, four phases of magmatism occurred in WKPK during the Early Paleozoic, Triassic-Jurassic, Early Cretaceous, and Cenozoic. These voluminous magmatic rocks contain critical information on the evolution of the Tethys Oceans. In this contribution, we provide field observations, petrography, ages, whole-rock elemental and Sr-Nd isotopic compositions, and zircon in situ Lu-Hf isotopes of the Triassic-Jurassic granitoids and pegmatites from the Dahongliutan in Western Kunlun and Turuke area at the Pamir Plateau, in an attempt to constrain their petrogenesis and to decipher a more detailed Paleo-Tethys evolution process. The Dahongliutan pluton is composed of diorites (ca. 210 Ma) and monzogranite (ca. 200 Ma). The diorites have moderate SiO2 (56.77–62.22 wt. %), variable Mg# (46–49), and low Cr (34.4–50.6 ppm) and Ni contents (7.0–14.5 ppm). They show LREE-enriched patterns (LaN/YbN=4.3–17), with variable negative Eu anomalies (0.63–0.91) and variable ratios of Nb/La (0.27–0.97). Isotopically, the diorites display enriched whole-rock εNdt (-5.43 to -7.67) and negative to positive zircon εHft values (-6.6 to 0.4). They were most likely generated by melting of a subduction-modified mantle source with subsequent assimilation and fractional crystallization. The Turuke monzogranites (ca. 202–197 Ma) have S-type granite characteristics and are characterized by high SiO2 (70.36–76.12 wt. %) and A/CNK values (1.19–1.36), variable LREE-enriched patterns (LaN/YbN=8.87–14.40), negative Eu anomaly (0.07–0.56), relatively uniform whole-rock εNdt (-10.49 to -11.22), and variable negative zircon εHft values (-10.7 to -1.3). They were probably generated by muscovite-dehydration melting of dominantly metapelitic sources. The widespread pegmatites (ca. 195 Ma) at the Dahongliutan area record an extensional setting after the collision of Karakorum with the South Kunlun-Tianshuihai terrane. Combining our new data with the previous studies, we propose a divergent double-sided subduction of the Paleo-Tethys Ocean (243–208 Ma) and a gradual closure of the Paleo-Tethys Ocean from east (ca. 200 Ma) to west (ca. 180 Ma) to explain the Triassic-Jurassic tectono-magmatism in the WKPK.


2020 ◽  
Author(s):  
Wei Fang ◽  
Li-Qun Dai ◽  
et al.

Table S1: Major and trace element compositions of lamprophyres from the eastern North China Craton; Table S2: Whole-rock Sr, Nd, and Hf isotope compositions of lamprophyres from the eastern North China Craton; Table S3: LA-ICPMS Zircon U-Pb isotope compositions of lamprophyres from the eastern North China Craton; Table S4: Zircon LA-MC-ICPMS Lu-Hf isotope compositions of lamprophyres from the eastern North China Craton.


Sign in / Sign up

Export Citation Format

Share Document