Multi-server queueing system with a Batch Markovian Arrival Process and negative customers

2006 ◽  
Vol 67 (12) ◽  
pp. 1958-1973 ◽  
Author(s):  
C. S. Kim ◽  
V. I. Klimenok ◽  
D. S. Orlovskii
Author(s):  
Valentina I. Klimenok

In this paper, we investigate a multi-server queueing system with an unlimited buffer, which can be used in the design of energy consumption schemes and as a mathematical model of unreliable real stochastic systems. Customers arrive to the system in a batch Markovian arrival process, the service times are distributed according to the phase law. If the service time of the customer by the server exceeds a certain random value distributed according to the phase law, this server receives assistance from the reserve server from a finite set of reserve servers. In the paper, we calculate the stationary distribution and performance characteristics of the system.


1994 ◽  
Vol 7 (2) ◽  
pp. 111-124 ◽  
Author(s):  
Sadrac K. Matendo

We consider a single server infinite capacity queueing system, where the arrival process is a batch Markovian arrival process (BMAP). Particular BMAPs are the batch Poisson arrival process, the Markovian arrival process (MAP), many batch arrival processes with correlated interarrival times and batch sizes, and superpositions of these processes. We note that the MAP includes phase-type (PH) renewal processes and non-renewal processes such as the Markov modulated Poisson process (MMPP).The server applies Kella's vacation scheme, i.e., a vacation policy where the decision of whether to take a new vacation or not, when the system is empty, depends on the number of vacations already taken in the current inactive phase. This exhaustive service discipline includes the single vacation T-policy, T(SV), and the multiple vacation T-policy, T(MV). The service times are i.i.d. random variables, independent of the interarrival times and the vacation durations. Some important performance measures such as the distribution functions and means of the virtual and the actual waiting times are given. Finally, a numerical example is presented.


2007 ◽  
Vol 24 (03) ◽  
pp. 293-312 ◽  
Author(s):  
VALENTINA I. KLIMENOK ◽  
DMITRY S. ORLOVSKY ◽  
ALEXANDER N. DUDIN

A multi-server queueing model with a Batch Markovian Arrival Process, phase-type service time distribution and impatient repeated customers is analyzed. After any unsuccessful attempt, the repeated customer leaves the system with the fixed probability. The behavior of the system is described in terms of continuous time multi-dimensional Markov chain. Stability condition and an algorithm for calculating the stationary state distribution of this Markov chain are obtained. Main performance measures of the system are calculated. Numerical results are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yung-Chung Wang ◽  
Dong-Liang Cai ◽  
Li-Hsin Chiang ◽  
Cheng-Wei Hu

This paper applies a matrix-analytical approach to analyze the temporal behavior of Markovian-modulated batch-service queue with discrete-time batch Markovian arrival process (DBMAP). The service process is correlated and its structure is presented through discrete-time batch Markovian service process (DBMSP). We examine the temporal behavior of packet loss by means of conditional statistics with respect to congested and noncongested periods that occur in an alternating manner. The congested period corresponds to having more than a certain number of packets in the buffer; noncongested period corresponds to the opposite. All of the four related performance measures are derived, including probability distributions of a congested and noncongested periods, the probability that the system stays in a congested period, the packet loss probability during congested period, and the long term packet loss probability. Queueing systems of this type arise in the domain of wireless communications.


Sign in / Sign up

Export Citation Format

Share Document