Reduced Kinetic Schemes for Complex Reacting Flow Computations of Propane–Air Combustion

2020 ◽  
Vol 56 (1) ◽  
pp. 23-35
Author(s):  
E. Dogkas ◽  
I. Lytras ◽  
P. Koutmos ◽  
G. Kontogouris
1985 ◽  
Vol 46 (C7) ◽  
pp. C7-3-C7-8
Author(s):  
A. Blumen ◽  
G. Zumofen ◽  
J. Klafter
Keyword(s):  

1988 ◽  
Author(s):  
T. CHITSOMBOON ◽  
G. NORTHAM ◽  
R. ROGERS ◽  
G. DISKIN
Keyword(s):  

2001 ◽  
Author(s):  
Edward Luke ◽  
Xiao-Ling Tong ◽  
Junxiao Wu ◽  
Lin Tang ◽  
Pasquale Cinnella

1998 ◽  
Vol 120 (1) ◽  
pp. 60-68 ◽  
Author(s):  
V. R. Katta ◽  
W. M. Roquemore

Spatially locked vortices in the cavities of a combustor aid in stabilizing the flames. On the other hand, these stationary vortices also restrict the entrainment of the main air into the cavity. For obtaining good performance characteristics in a trapped-vortex combustor, a sufficient amount of fuel and air must be injected directly into the cavity. This paper describes a numerical investigation performed to understand better the entrainment and residence-time characteristics of cavity flows for different cavity and spindle sizes. A third-order-accurate time-dependent Computational Fluid Dynamics with Chemistry (CFDC) code was used for simulating the dynamic flows associated with forebody-spindle-disk geometry. It was found from the nonreacting flow simulations that the drag coefficient decreases with cavity length and that an optimum size exists for achieving a minimum value. These observations support the earlier experimental findings of Little and Whipkey (1979). At the optimum disk location, the vortices inside the cavity and behind the disk are spatially locked. It was also found that for cavity sizes slightly larger than the optimum, even though the vortices are spatially locked, the drag coefficient increases significantly. Entrainment of the main flow was observed to be greater into the smaller-than-optimum cavities. The reacting-flow calculations indicate that the dynamic vortices developed inside the cavity with the injection of fuel and air do not shed, even though the cavity size was determined based on cold-flow conditions.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Sebastian Blauth ◽  
Christian Leithäuser ◽  
René Pinnau

AbstractWe consider the optimization of a chemical microchannel reactor by means of PDE-constrained optimization techniques, using the example of the Sabatier reaction. To model the chemically reacting flow in the microchannels, we introduce a three- and a one-dimensional model. As these are given by strongly coupled and highly nonlinear systems of partial differential equations (PDEs), we present our software package cashocs which implements the adjoint approach and facilitates the numerical solution of the subsequent optimization problems. We solve a parameter identification problem numerically to determine necessary kinetic parameters for the models from experimental data given in the literature. The obtained results show excellent agreement to the measurements. Finally, we present two optimization problems for optimizing the reactor’s product yield. First, we use a tracking-type cost functional to maximize the reactant conversion, keep the flow rate of the reactor fixed, and use its wall temperature as optimization variable. Second, we consider the wall temperature and the inlet gas velocity as optimization variables, use an objective functional for maximizing the flow rate in the reactor, and ensure the quality of the product by means of a state constraint. The results obtained from solving these problems numerically show great potential for improving the design of the microreactor.


Sign in / Sign up

Export Citation Format

Share Document