A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere

2012 ◽  
Vol 50 (1) ◽  
pp. 21-31 ◽  
Author(s):  
V. N. Gubenko ◽  
A. G. Pavelyev ◽  
R. R. Salimzyanov ◽  
V. E. Andreev
2011 ◽  
Vol 4 (10) ◽  
pp. 2153-2162 ◽  
Author(s):  
V. N. Gubenko ◽  
A. G. Pavelyev ◽  
R. R. Salimzyanov ◽  
A. A. Pavelyev

Abstract. A new method for the reconstruction of internal gravity wave (IGW) parameters from a single vertical temperature profile measurement in the Earth's atmosphere has been developed. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, then analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitude thresholds of the temperature wave field and on the linear IGW saturation theory in which amplitude thresholds are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal gravity wave reaches the shear instability limit, energy is assumed to be dissipated in such a way that the amplitude is maintained at the instability limit as the wave propagates upwards. In order to approbate the method we have used data of simultaneous high-resolution balloon measurements of the temperature and wind velocity in the Earth's stratosphere over France where a long-period inertia-gravity wave has been detected. Using the radiosonde temperature data only, we have reconstructed all wave parameters, which were determined by radiosondes, with relative deviations not larger than 30%. An application of the method to the radio occultation (RO) data has given the possibility to identify the IGWs in the Earth's stratosphere and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal perturbations of the wind velocity, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy, vertical fluxes of the wave energy and horizontal momentum. The obtained results of internal wave studies in the Earth's stratosphere deduced from the COSMIC and CHAMP GPS occultation temperature profiles are presented and discussed.


2011 ◽  
Vol 4 (2) ◽  
pp. 1397-1425
Author(s):  
V. N. Gubenko ◽  
A. G. Pavelyev ◽  
R. R. Salimzyanov ◽  
A. A. Pavelyev

Abstract. The new method for the reconstruction of internal gravity wave (IGW) parameters from a single vertical temperature profile measurement in the Earth atmosphere has been developed. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, then analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitude thresholds of the temperature wave field and on the linear IGW saturation theory in which amplitude thresholds are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal gravity wave reaches the shear instability limit, energy is assumed to be dissipated in such a way that the amplitude is maintained at the instability limit as the wave propagates upwards. In order to approbate the method we have used in situ data of simultaneous balloon high-resolution measurements of the temperature and wind velocity in the Earth stratosphere (France) where a long-period inertia-gravity wave has been detected. Using the temperature data only, we have reconstructed all the measured wave parameters with uncertainties not larger than 30%. An application of the method to the radio occultation data has given the possibility to identify the IGWs in the Earth stratosphere and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal perturbations of the wind velocity, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy, vertical fluxes of the wave energy and horizontal momentum. The obtained results of internal wave studies in the Earth stratosphere deduced from the COSMIC and CHAMP GPS occultation temperature profiles have been presented and discussed.


2014 ◽  
Vol 32 (2) ◽  
pp. 181-186 ◽  
Author(s):  
O. Onishchenko ◽  
O. Pokhotelov ◽  
W. Horton ◽  
A. Smolyakov ◽  
T. Kaladze ◽  
...  

Abstract. The effect of the wind shear on the roll structures of nonlinear internal gravity waves (IGWs) in the Earth's atmosphere with the finite vertical temperature gradients is investigated. A closed system of equations is derived for the nonlinear dynamics of the IGWs in the presence of temperature gradients and sheared wind. The solution in the form of rolls has been obtained. The new condition for the existence of such structures was found by taking into account the roll spatial scale, the horizontal speed and wind shear parameters. We have shown that the roll structures can exist in a dynamically unstable atmosphere.


1998 ◽  
Vol 11 (2) ◽  
pp. 1022-1022
Author(s):  
P.B. Babadzhanov

Observations in Central Asia in 1965-1966 by both photographic and radar methods allowed a determination of the radiants and orbits of Leonids (Babadzhanov and Getman 1970). Photographs showed that meteoroids undergo quasi-continuous fragmentation (QCF) in the Earth’s atmosphere. Taking account of QCF, the density of the Leonid meteoroids were found to lie between 1 and Agcm-3 the average being 2gcm-3 (Babadzhanov 1994), in agreement with the density range of between 0.2 and 6gcm-3 given by Maas et al (1990) for dust grains from comet P/1 Halley, with values below 0.6 being rare. Further, the icy grains have a density of about 1gcm-3 while silicate grains have a mean density 2.5 times higher.


Sign in / Sign up

Export Citation Format

Share Document