precipitable water vapor
Recently Published Documents


TOTAL DOCUMENTS

410
(FIVE YEARS 125)

H-INDEX

31
(FIVE YEARS 6)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1698
Author(s):  
Zofia Baldysz ◽  
Grzegorz Nykiel ◽  
Beata Latos ◽  
Dariusz B. Baranowski ◽  
Mariusz Figurski

This paper addresses the subject of inter-annual variability of the tropical precipitable water vapor (PWV) derived from 18 years of global navigation satellite system (GNSS) observations. Non-linear trends of retrieved GNSS PWV were investigated using the singular spectrum analysis (SSA) along with various climate indices. For most of the analyzed stations (~49%) the GNSS PWV anomaly was related to the El Niño Southern Oscillation (ENSO), although its influence on the PWV variability was not homogeneous. The cross-correlations coefficient values estimated between the Multivariate ENSO Index (MEI) and PWV were up to 0.78. A strong cross-correlation was also found for regional climate pattern expressed through CAR, DMI, HAW, NPGO, TNA and TSA indices. A distinct agreement was also found when instead of climate indices, the local sea surface temperature was examined (average correlation 0.60). The SSA method made it also possible to distinguish small-scale phenomena that affect PWV, such as local droughts or wetter rainy seasons. The overall nature of the investigated changes was also verified through linear trend analysis. In general, not a single station was characterized by a negative trend and its weighted mean value, calculated for all stations was equal to 0.08 ± 0.01 mm/year.


2021 ◽  
Vol 14 (12) ◽  
pp. 7821-7834
Author(s):  
Wengang Zhang​​​​​​​ ◽  
Ling Wang ◽  
Yang Yu ◽  
Guirong Xu ◽  
Xiuqing Hu ◽  
...  

Abstract. Atmospheric water vapor plays a key role in Earth's radiation balance and hydrological cycle, and the precipitable-water-vapor (PWV) product under clear-sky conditions has been routinely provided by the advanced Medium Resolution Spectral Imager (MERSI-II) on board Fengyun-3D since 2018. The global evaluation of the PWV product derived from MERSI-II is performed herein by comparing it with PWV from the Integrated Global Radiosonde Archive (IGRA) based on a total of 462 sites (57 219 matchups) during 2018–2021. The monthly averaged PWV from MERSI-II presents a decreasing distribution of PWV from the tropics to the polar regions. In general, a sound consistency exists between PWV values of MERSI-II and IGRA; their correlation coefficient is 0.951, and their root mean squared error (RMSE) is 0.36 cm. The histogram of mean bias (MB) shows that the MB is concentrated around zero and mostly located within the range from −1.00 cm to 0.50 cm. For most sites, PWV is underestimated with the MB between −0.41 and 0.05 cm. However, there is also an overestimated PWV, which is mostly distributed in the area surrounding the Black Sea and the middle of South America. There is a slight underestimation of MERSI-II PWV for all seasons with the MB value below −0.18 cm, with the bias being the largest magnitude in summer. This is probably due to the presence of thin clouds, which weaken the radiation signal observed by the satellite. We also find that there is a larger bias in the Southern Hemisphere, with a large value and significant variation in PWV. The binned error analysis revealed that the MB and RMSE increased with the increasing value of PWV, but there is an overestimation for PWV smaller than 1.0 cm. In addition, there is a higher MB and RMSE with a larger spatial distance between the footprint of the satellite and the IGRA station, and the RMSE ranged from 0.33 to 0.47 cm. There is a notable dependency on solar zenith angle of the deviations between MERSI-II and IGRA PWV products.


2021 ◽  
Vol 13 (23) ◽  
pp. 4866
Author(s):  
Keita Matsuzawa ◽  
Yohei Kinoshita

Interferometric synthetic aperture radar (InSAR) enables us to obtain precipitable water vapor (PWV) maps with high spatial resolution through the phase difference caused by refraction in the atmosphere. Although previous studies have evaluated the error level of InSARPWV observations, they validated it only with C-band InSARPWV observations. Since ionospheric disturbance seriously contaminates the InSAR phase in the case of the lower-frequency SAR system, it is necessary for a PWV error level evaluation correcting the ionospheric effect appropriately if we use lower-frequency SAR systems, such as the Advanced Land Observing Satellite-2 (ALOS-2). In this paper, we evaluated the error level of the L-band InSARPWV observation obtained from ALOS-2 data covering four areas in Japan. We compared the InSAR observations with global navigation satellite system (GNSS) atmospheric observations and estimated the L-band InSARPWV error value by utilizing the error propagation theory. As a result, the L-band InSARPWV absolute error reached 2.83 mm, which was comparable to traditional PWV observations. Moreover, we investigated the impacts of the seasonality, the interferometric coherence, and the height dependence on the PWV observation accuracy in InSAR.


2021 ◽  
Vol 13 (21) ◽  
pp. 4490
Author(s):  
Hang Su ◽  
Tao Yang ◽  
Kan Wang ◽  
Baoqi Sun ◽  
Xuhai Yang

Water vapor is one of the most important greenhouse gases in the world. There are many techniques that can measure water vapor directly or remotely. In this work, we first study the Global Positioning System (GPS)- and the Global Navigation Satellite System (GLONASS)-derived Zenith Wet Delay (ZWD) time series based on 11 years of the second reprocessing campaign of International Global Navigation Satellite Systems (GNSS) Service (IGS) using 320 globally distributed stations. The amount of measurement, the local environment, and the antenna radome are shown to be the main factors that affect the GNSS ZWDs and the corresponding a posteriori formal errors. Furthermore, antenna radome is able to effectively reduce the systematic bias of ZWDs and a posteriori formal errors between the GPS- and GLONASS-based solutions. With the development of the GLONASS, the ZWD differences between the GPS- and the GLONASS-based solutions have gradually decreased to sub-mm-level after GLONASS was fully operated. As the GPS-based Precipitable Water Vapor (PWV) is usually used as the reference to evaluate the other PWV products, the PWV consistency among several common techniques is evaluated, including GNSSs, spaceborne sensors, and numerical products from the European Center for Medium-Range Weather Forecasts (ECMWF). As an example of the results from a detailed comparison analysis, the long-term global analysis shows that the PWV obtained from the GNSS and the ECMWF have great intra-agreements. Based on the global distribution of the magnitude of the PWV and the PWV drift, most of the techniques showed superior agreement and proved their ability to do climate research. With a detailed study performed for the ZWDs and PWV on a long-term global scale, this contribution provides a useful supplement for future research on the GNSS ZWD and PWV.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012024
Author(s):  
Grigoriy Bubnov ◽  
Peter Zemlyanukha ◽  
Evgeniy Dombek ◽  
Vyacheslav Vdovin

Abstract This work deals with the first try to calculate the amount of Precipitable Water Vapor (PWV) in atmosphere by using machine learning and AI methods. We use the detector voltages series measured by radiometric system “MIAP-2” as the initial data for machine learning. The radiometer MIAP-2 works by “atmospheric dip method” in 2mm and 3mm atmospheric transparency windows. We also have PWV data series collected by Water Vapor Radiometer and GNSS receiver for data validation. The best convergence results were demonstrated by the independent component analysis (ICA) method with coefficient of determination R2= 0.53 and artificial neural network method (ANN) with R2= 0.8. These methods allow to reduce the systematic errors due to direct PWV calculation from raw radiometric data avoiding unnecessary steps opacity calculation.


Author(s):  
Wayan Suparta ◽  
Aris Warsita ◽  
Ircham Ircham

Water vapor is the engine of the weather system. Continuous monitoring of its variability on spatial and temporal scales is essential to help improve weather forecasts. This research aims to develop an automatic weather station at low cost using an Arduino microcontroller to monitor precipitable water vapor (PWV) on a micro-scale. The surface meteorological data measured from the BME280 sensor is used to determine the PWV. Our low-cost systems also consisted of a DS3231 real-time clock (RTC) module, a 16×2 liquid crystal display (LCD) module with an I<sup>2</sup>C, and a micro-secure digital (micro-SD) card. The core of the system employed the Arduino Uno surface mount device (SMD) R3 board. The measurement results for long-term monitoring at the tested sites (ITNY and GUWO) found that the daily mean error of temperature and humidity values were 1.30% and 3.16%, respectively. While the error of air pressure and PWV were 0.092% and 2.61%, respectively. The PWV value is higher when the sun is very active or during a thunderstorm. The developed weather system is also capable of measuring altitude on pressure measurements and automatically stores daily data. With a total cost below 50 dollars, all major and support systems developed are fully functional and stable for long-term measurements.


Sign in / Sign up

Export Citation Format

Share Document