Generalized solution of a one-dimensional quasilinear boundary value problem of the hydriding type with nonlinear boundary conditions and state evolution

2011 ◽  
Vol 47 (4) ◽  
pp. 581-589
Author(s):  
I. A. Chernov
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chein-Shan Liu ◽  
Jiang-Ren Chang

Purpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method. Design/methodology/approach The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula. Findings When the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions. Research limitations/implications Basically, the authors’ strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides. Practical implications Starting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied. Originality/value Through the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xiping Liu ◽  
Fanfan Li ◽  
Mei Jia ◽  
Ertao Zhi

We study the existence and uniqueness of the solutions for the boundary value problem of fractional differential equations with nonlinear boundary conditions. By using the upper and lower solutions method in reverse order and monotone iterative techniques, we obtain the sufficient conditions of both the existence of the maximal and minimal solutions between an upper solution and a lower solution and the uniqueness of the solutions for the boundary value problem and present the iterative sequence for calculating the approximate analytical solutions of the boundary value problem and the error estimate. An example is also given to illustrate the main results.


Sign in / Sign up

Export Citation Format

Share Document