On the application of the method of matching asymptotic expansions to a singular system of ordinary differential equations with a small parameter

2014 ◽  
Vol 50 (5) ◽  
pp. 608-622
Author(s):  
O. Yu. Khachai
2021 ◽  
Vol 84 (4) ◽  
pp. 69-75
Author(s):  
Zh.K. Daniyarova ◽  

Singularly perturbed partial differential equations with small parameters with higher derivatives deserve special attention, which often arise in a variety of applied problems and are used in describing mathematical models of diffusion processes, absorption taking into account small diffusion, filtration of liquids in porous media, chemical kinetics, chromatography, heat and mass transfer, hydrodynamics and many other fields. It is necessary to consider the creation of an asymptotic classification of solutions of singularly perturbed equations using a well-known approach to solving the boundary value problem. In this case, the singular problem is understood as the problem of constructing the asymptotics of the solution of the Cauchy problem for a system of ordinary differential equations with a small parameter with a large derivative. The asymptotics of the solution in all cases is based on the last time interval or the construction of a boundary value problem for a system with a weak clot in an asymptotically large time interval. Purpose - to construct and substantiate the asymptotics of solving a singular initial problem for a system of two nonlinear ordinary differential equations with a small parameter; To date, a number of methods have been developed for constructing asymptotic expansions of solutions to various problems. This is the method of boundary functions developed in the works of A.B. Vasilyeva, M.I. Vishik, L.A. Lusternik, V.F. Butuzov; the regularization method of S. A. Lomov, methods of averaging, VKB, splicing of asymptotic decompositions of A.M. Ilyin and others. All the above methods allow us to obtain asymptotic expansions of solutions for wide classes of equations. At the same time, such singularly perturbed problems often arise, to which ready-made methods are not applicable or do not allow to obtain an effective result. Therefore, the development of methods for solving equations remains a very urgent problem. As a result of the study, an algorithm for constructing an asymptotic classification of the initial solution of the problem with a singular perturbation is given, and approaches to estimating the residual term are also shown.


Author(s):  
Safia Meftah

The question discussed in this study concerns one of the most helpful approximation methods, namely, the expansion of a solution of a differential equation in a series in powers of a small parameter. We used the Lindstedt-Poincaré perturbation method to construct a solution closer to uniformly valid asymptotic expansions for periodic solutions of second-order nonlinear differential equations.


2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
R. K. Gazizov ◽  
C. M. Khalique

Classification of van der Pol-type equations with respect to admitted approximate transformation groups transforming a small parameter is given. It is shown that approximate symmetries transforming the small parameter as well as the usual approximate symmetries can be used for approximate integration (e.g., by method of successive reduction of order) of ordinary differential equations with a small parameter.


2016 ◽  
Vol 141 (2) ◽  
pp. 143-151
Author(s):  
Mustapha Lakrib ◽  
Tahar Kherraz ◽  
Amel Bourada

Sign in / Sign up

Export Citation Format

Share Document