approximate integration
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 8 (4) ◽  
pp. 591-596
Author(s):  
Zhetkerbay Kaidassov ◽  
Zhailan S. Tutkusheva

Every year the interest of theorists and practitioners in optimisation problems is growing, and extreme problems are found in all branches of science. Local optimisation problems are well studied and there are constructive methods for their solution. However, global optimisation problems do not meet the requirements in practice; therefore, the search for the global minimum remains one of the major challenges for computational and applied mathematics. This study discusses the search for the global minimum of multidimensional and multiextremal problems with high precision. Mechanical quadrature formulas, that is, the formulas for approximate integration were applied to calculate the integrals. Of all the approximate integration formulas, the Sobolev lattice cubature formulas with a regular boundary layer were chosen. In multidimensional examples, the Sobolev formulas are optimal. Computational experiments were carried out in the most popular C++ programming language. Based on the computational experiments, a new algorithm was proposed. In three-dimensional space, the calculations of the global minimum have been described using specific examples. Computational experiments show that the proposed algorithm works for multiextremal problems with the same amount of time as for convex ones.


2021 ◽  
Vol 4 (4(112)) ◽  
pp. 40-46
Author(s):  
Anzhelika Motailo ◽  
Galina Tuluchenko

This paper reports the construction of cubature formulas for a finite element in the form of a bipyramid, which have a second algebraic order of accuracy. The proposed formulas explicitly take into consideration the parameter of bipyramid deformation, which is important when using irregular grids. The cubature formulas were constructed by applying two schemes for the location of interpolation nodes along the polyhedron axes: symmetrical and asymmetrical. The intervals of change in the elongation (compression) parameter of a bipyramid semi-axis have been determined, within which interpolation nodes of the constructed formulas belong to the integration region, while the weight coefficients are positive, which warrants the stability of calculations based on these cubature formulas. If the deformation parameter of the bipyramid is equal to unity, then both cubature formulas hold for the octahedron and have a third algebraic order of accuracy. The resulting formulas make it possible to find elements of the local stiffness matrix on a finite element in the form of a bipyramid. When calculating with a finite number of digits, a rounding error occurs, which has the same order for each of the two cubature formulas. The intervals of change in the elongation (compression) parameter of the bipyramid semi-axis have been determined, which meet the requirements, which are employed in the ANSYS software package, for deviations in the volume of the bipyramid from the volume of the octahedron. Among the constructed cubature formulas for a bipyramid, the optimal formula in terms of the accuracy of calculations has been chosen, derived from applying a symmetrical scheme of the arrangement of nodes relative to the center of the bipyramid. This formula is invariant in relation to any affinity transformations of the local bipyramid coordinate system. The constructed cubature formulas could be included in libraries of methods for approximate integration used by those software suites that implement the finite element method.


2020 ◽  
Vol 25 (1) ◽  
pp. 142-149
Author(s):  
Jaime Castro Pérez ◽  
Andrés González Nucamendi ◽  
Gerardo Pioquinto Aguilar Sánchez

Using the Intermediate Value Theorem we demonstrate the rules of Trapeze and Simpson's. Demonstrations with this approach and its generalization to new formulas are less laborious than those resulting from methods such as polynomial interpolation or Gaussian quadrature. In addition, we extend the theory of approximate integration by finding new approximate integration formulas. The methodology we used to obtain this generalization was to use the definition of the integral defined by Riemann sums. Each Riemann sum provides an approximation of the result of an integral. With the help of the Intermediate Value Theorem and a detailed analysis of the Middle Point, Trapezoidal and Simpson Rules we note that these rules of numerical integration are Riemann sums. The results we obtain with this analysis allowed us to generalize each of the rules mentioned above and obtain new rules of approximation of integrals. Since each of the rules we obtained uses a point in the interval we have called them according to the point of the interval we take. In conclusion we can say that the method developed here allows us to give new formulas of numerical integration and generalizes those that already exist.


2019 ◽  
Vol 3 (4) ◽  
pp. 32-37
Author(s):  
Ozodjon Isomidinovich Jalolov ◽  
◽  
Khurshidzhon Usmanovich Khayatov

An upper bound is obtained for the norm of the error functional of the weight cubature formula in the Sobolev space . The modern formulation of the problem of optimization of approximate integration formulas is to minimize the norm of the error functional of the formula on the selected normalized spaces. In these works, the problem of optimality with respect to some definite space is investigated. Most of the problems are considered in the Sobolev space


2018 ◽  
Vol 23 (4) ◽  
pp. 63 ◽  
Author(s):  
Le Phuong Quan

A complete MAPLE procedure is designed to effectively implement an algorithm for approximating trigonometric functions. The algorithm gives a piecewise polynomial approximation on an arbitrary interval, presenting a special partition that we can get its parts, subintervals with ending points of finite rational numbers, together with corresponding approximate polynomials. The procedure takes a sequence of pairs of interval–polynomial as its output that we can easily exploit in some useful ways. Examples on calculating approximate values of the sine function with arbitrary accuracy for both rational and irrational arguments as well as drawing the graph of the piecewise approximate functions are presented. Moreover, from the approximate integration on [ a , b ] with integrands of the form x m sin x , another MAPLE procedure is proposed to find the desired polynomial estimates in norm for the best L 2 -approximation of the sine function in the vector space P ℓ of polynomials of degree at most ℓ, a subspace of L 2 ( a , b ) .


Author(s):  
Quan Le Phuong

A complete MAPLE procedure is designed to implement effectively an algorithm for approximating the trigonometric functions. The algorithm gives a piecewise polynomial approximation on an arbitrary interval, presenting a special partition that we can get its parts, subintervals with ending points of finite rational numbers, together with corresponding approximate polynomials. The procedure takes a sequence of pairs of interval-polynomial as its output that we can easily explore in some useful ways. Examples on calculating approximate values of the sine function with arbitrary accuracy for both of rational and irrational arguments as well as drawing the graph of the piecewise approximate functions will be presented. Moreover, from the approximate integration of integrands of the form $x^m\sin x$ on $[a,b]$, another MAPLE procedure is proposed to find the desired polynomial estimates in norm for the best $L^2$-approximation of the sine function in the vector space $\mathcal{P}_{\ell}$ of polynomials of degree at most $\ell$, a subspace of $L^2(a,b)$.


Sign in / Sign up

Export Citation Format

Share Document