Propagation and annihilation of vortex pairs in a smoothly inhomogeneous Bose-Einstein condensate

JETP Letters ◽  
2012 ◽  
Vol 95 (11) ◽  
pp. 549-554 ◽  
Author(s):  
V. A. Mironov ◽  
L. A. Smirnov
2019 ◽  
Vol 485 (6) ◽  
pp. 670-675
Author(s):  
P. E. Ryabov

In this paper we consider a completely Liouville integrable Hamiltonian system with two degrees of freedom, which describes the dynamics of two vortex filaments in a Bose-Einstein condensate enclosed in a harmonic trap. For vortex pairs of positive intensity detected bifurcation of three Liouville tori into one. Such bifurcation was found in the integrable case of Goryachev-Chaplygin-Sretensky in the dynamics of a rigid body. For the integrable perturbation of the physical parameter of the intensity ratio, identified bifurcation proved to be unstable, which led to bifurcations of the type of two tori into one and vice versa.


2021 ◽  
Vol 126 (3) ◽  
Author(s):  
T. Dieterle ◽  
M. Berngruber ◽  
C. Hölzl ◽  
R. Löw ◽  
K. Jachymski ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tobias Kroker ◽  
Mario Großmann ◽  
Klaus Sengstock ◽  
Markus Drescher ◽  
Philipp Wessels-Staarmann ◽  
...  

AbstractPlasma dynamics critically depends on density and temperature, thus well-controlled experimental realizations are essential benchmarks for theoretical models. The formation of an ultracold plasma can be triggered by ionizing a tunable number of atoms in a micrometer-sized volume of a 87Rb Bose-Einstein condensate (BEC) by a single femtosecond laser pulse. The large density combined with the low temperature of the BEC give rise to an initially strongly coupled plasma in a so far unexplored regime bridging ultracold neutral plasma and ionized nanoclusters. Here, we report on ultrafast cooling of electrons, trapped on orbital trajectories in the long-range Coulomb potential of the dense ionic core, with a cooling rate of 400 K ps−1. Furthermore, our experimental setup grants direct access to the electron temperature that relaxes from 5250 K to below 10 K in less than 500 ns.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


Sign in / Sign up

Export Citation Format

Share Document