Participation of the piRNA pathway in recruiting a component of RNA polymerase I transcription initiation complex to germline cell nucleoli

2017 ◽  
Vol 51 (5) ◽  
pp. 718-723 ◽  
Author(s):  
E. A. Fefelova ◽  
A. D. Stolyarenko ◽  
E. Y. Yakushev ◽  
V. A. Gvozdev ◽  
M. S. Klenov
1986 ◽  
Vol 6 (10) ◽  
pp. 3418-3427 ◽  
Author(s):  
H Kato ◽  
M Nagamine ◽  
R Kominami ◽  
M Muramatsu

Steps for the formation of transcription initiation complex on the human rRNA gene (rDNA) in vitro were analyzed with partially purified transcription factors and RNA polymerase I. The reaction requires at least two factors besides RNA polymerase I for maximal efficiency. Preincubation and short-pulse analyses of the accurate transcripts revealed the following steps. First, the species-dependent factor, designated TFID, bound to the rDNA template, forming a preinitiation complex (PIC-1) which was resistant to a moderate concentration (0.015 to 0.02%) of Sarkosyl. Other factors, designated TFIA and RNA polymerase I, were then added to convert it to the final preinitiation complex PIC-3. This complex incorporated the first two nucleoside triphosphates of the starting site to complete the initiation complex (IC), which was resistant to a high concentration (0.2%) of Sarkosyl. Binding of TFID was rate limiting in the overall initiation reaction in vitro. Together with the kinetics of incorporation, the results are interpreted to mean that TFID, one bound, remains complexed with rDNA together with TFIA as the PIC-2 for many rounds of transcription by RNA polymerase I. Thus, the formation of PIC-2 may be a prerequisite for the stable opening of rDNA for transcription in vivo.


1986 ◽  
Vol 6 (10) ◽  
pp. 3418-3427
Author(s):  
H Kato ◽  
M Nagamine ◽  
R Kominami ◽  
M Muramatsu

Steps for the formation of transcription initiation complex on the human rRNA gene (rDNA) in vitro were analyzed with partially purified transcription factors and RNA polymerase I. The reaction requires at least two factors besides RNA polymerase I for maximal efficiency. Preincubation and short-pulse analyses of the accurate transcripts revealed the following steps. First, the species-dependent factor, designated TFID, bound to the rDNA template, forming a preinitiation complex (PIC-1) which was resistant to a moderate concentration (0.015 to 0.02%) of Sarkosyl. Other factors, designated TFIA and RNA polymerase I, were then added to convert it to the final preinitiation complex PIC-3. This complex incorporated the first two nucleoside triphosphates of the starting site to complete the initiation complex (IC), which was resistant to a high concentration (0.2%) of Sarkosyl. Binding of TFID was rate limiting in the overall initiation reaction in vitro. Together with the kinetics of incorporation, the results are interpreted to mean that TFID, one bound, remains complexed with rDNA together with TFIA as the PIC-2 for many rounds of transcription by RNA polymerase I. Thus, the formation of PIC-2 may be a prerequisite for the stable opening of rDNA for transcription in vivo.


NAR Cancer ◽  
2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Jean-Clément Mars ◽  
Michel G Tremblay ◽  
Mélissa Valere ◽  
Dany S Sibai ◽  
Marianne Sabourin-Felix ◽  
...  

Abstract In the search for drugs to effectively treat cancer, the last 10 years have seen a resurgence of interest in targeting ribosome biogenesis. CX-5461 is a potential inhibitor of ribosomal RNA synthesis that is now showing promise in phase I trials as a chemotherapeutic agent for a range of malignancies. Here, we show that CX-5461 irreversibly inhibits ribosomal RNA transcription by arresting RNA polymerase I (RPI/Pol1/PolR1) in a transcription initiation complex. CX-5461 does not achieve this by preventing formation of the pre-initiation complex nor does it affect the promoter recruitment of the SL1 TBP complex or the HMGB-box upstream binding factor (UBF/UBTF). CX-5461 also does not prevent the subsequent recruitment of the initiation-competent RPI–Rrn3 complex. Rather, CX-5461 blocks promoter release of RPI–Rrn3, which remains irreversibly locked in the pre-initiation complex even after extensive drug removal. Unexpectedly, this results in an unproductive mode of RPI recruitment that correlates with the onset of nucleolar stress, inhibition of DNA replication, genome-wide DNA damage and cellular senescence. Our data demonstrate that the cytotoxicity of CX-5461 is at least in part the result of an irreversible inhibition of RPI transcription initiation and hence are of direct relevance to the design of improved strategies of chemotherapy.


1988 ◽  
Vol 8 (5) ◽  
pp. 1940-1946
Author(s):  
E Bateman ◽  
M R Paule

Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyrocarbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.


2006 ◽  
Vol 25 (16) ◽  
pp. 3784-3790 ◽  
Author(s):  
Sebastian Maurer ◽  
Jürgen Fritz ◽  
Georgi Muskhelishvili ◽  
Andrew Travers

1987 ◽  
Vol 7 (4) ◽  
pp. 1486-1495 ◽  
Author(s):  
M Nagamine ◽  
T Kishimoto ◽  
J Aono ◽  
H Kato ◽  
R Kominami ◽  
...  

We compared the ability of various deletion and substitution mutants of the mouse rRNA gene promoter to bind essential factors required for accurate transcription initiation by RNA polymerase I. Different amounts of a competitor template were first incubated with a mouse cell extract containing the whole complement of factors and RNA polymerase I, and then a tester template was added for the second incubation. Transcription was started by adding nucleoside triphosphates (one labeled), and the accurate transcripts were determined on a gel. The results indicated that the ability of 5' deletion mutants to sequester essential factors decreased almost concurrently with the impairment of in vitro transcription activity, whereas when the promoter sequence was removed from the 3' side, the transcription activity decreased earlier and more drastically than the sequestration ability. Similar, though not identical, results were obtained by preincubation with fraction D separated on a phosphocellulose column, indicating that the major factor which was sequestered was TFID, the species-dependent transcription initiation factor that binds first to the promoter in the initiation reaction (H. Kato, M. Nagamine, R. Kominami, and M. Muramatsu, Mol. Cell. Biol. 6:3418-3427, 1986). Compilation of the data suggests that a region inside the 5' half of the core promoter (-40 to -1) is essential for the binding of TFID. The 3' half of the promoter (-1 to downstream) is not essential for the binding of TFID but is highly important for an efficient transcription initiation. A strong down-mutant with a one-base substitution at -16 (G to A) had a reduced ability to bind to TFID, whereas a null mutant with a single base substitution at -7 (G to A) showed a binding ability similar to that of the wild-type promoter when tested with whole-cell extract. This null mutant, however, could not sequester the TFID well when incubated with fraction D alone, suggesting that the binding of TFID with this mutant is unstable in the absence of another factor(s) present in cell extract. The factor is not TFIA, which binds after TFID, because the addition of fraction A containing TFIA did not cause TFID to bind to the mutant. The availability of different mutants having lesions at different steps of transcription initiation will provide a powerful tool for the dissection of the initiation reaction of the RNA gene.


Sign in / Sign up

Export Citation Format

Share Document