Photothermal Effect of Infrared (808 nm) Laser Radiation and Gold Nanoparticles in Different Modifications on S. aureus

2020 ◽  
Vol 128 (6) ◽  
pp. 843-848
Author(s):  
E. S. Tuchina ◽  
V. V. Tuchin
Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2701
Author(s):  
Kirill Khabarov ◽  
Messan Nouraldeen ◽  
Sergei Tichonov ◽  
Anna Lizunova ◽  
Alexey Efimov ◽  
...  

This study investigates the processes of interaction of nanosecond pulsed-periodic laser radiation with the flow of aerosol agglomerates of gold nanoparticles synthesized in a spark discharge. Nanoparticles in a gas flow are spatially separated nano-objects whose interaction with each other and with the walls of an experimental cell was insignificant. Therefore, the energy absorbed by nanoparticles was used only for their own heating with further shape and size modification and on heat transfer to the surrounding gas. In the research, we used laser radiation with wavelengths of 527 and 1053 nm at pulse energies up to 900 µJ and pulse repetition rates up to 500 Hz. The dynamics of changes in the nanoparticles size during their sintering process depending on the laser pulses energy is characterized by an S-shaped shrinkage curve. Complete sintering of the initial agglomerates with their transformation into spherical nanoparticles is achieved by a series of impacting laser pulses. The result of nanoparticles’ laser modification is largely determined by the pulse energy and the efficiency of the nanoparticles’ radiation absorption.


2020 ◽  
Vol 10 (11) ◽  
pp. 1950-1959
Author(s):  
Lei Yang ◽  
Yumin Hu ◽  
Yuanfen Liu ◽  
Yanyan Liu ◽  
Si Miao ◽  
...  

The treatment of malignant bone tumors (including primary bone tumors and metastatic bone tumors) has always been a clinical challenge. The purpose of this study is to design a bone-targeted nano-carrier with photothermal effect to achieve chemo-photothermal therapy (CPT), which allows the minimal use of photothermal agents and chemical drugs to target bone tumors. Alendronate modified hollow gold nanoparticles (HGNPs- ALN) were synthesized using mercapto polyethylene glycol carboxyl (SH-PEG2000-COOH) as the connecting arm, fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) data show that HGNPs-ALN with a particle size of about 80 nm has been successfully synthesized. The hydroxyapatite affinity experiment in vitro indicated that HGNPs-ALN exhibited a high affinity to bone. In addition, the temperature of HGNPs-ALN under near-infrared laser irradiation can rise to 53 °C, which can achieve effective photothermal therapy for bone tumors. Bone-targeted hollow gold nanoparticles (DOX@HGNPs-ALN) loaded with doxorubicin hydrochloride (DOX) were synthesized by one-pot method. By comparing the stability and drug loading of HGNPs-ALN, it was concluded that the optimal mass ratio of HGNPs-ALN (calculated by the amount of gold) to DOX was about 1:2. HGNPs-ALN and DOX@HGNPs-ALN both have good photothermal stability and photothermal transformation properties, and confirmed the safety of HGNPs on human osteosarcoma cells. MTT experiments showed that DOX@HGNPs-ALN had the strongest killing effect on MG-63 osteosarcoma cells under laser irradiation (the killing rate is about 65%). According to these results, it can be considered that DOX@HGNPs-ALN has the potential of CPT synergistic targeting therapy for bone tumors.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Hadiyah N. Green ◽  
Dmitry V. Martyshkin ◽  
Cynthia M. Rodenburg ◽  
Eben L. Rosenthal ◽  
Sergey B. Mirov

The mastery of active tumor targeting is a great challenge in near infrared photothermal therapy (NIRPTT). To improve efficiency for targeted treatment of malignant tumors, we modify the technique of conjugating gold nanoparticles to tumor-specific antibodies. Polyethylene glycol-coated (PEGylated) gold nanorods (GNRs) were fabricated and conjugated to an anti-EGFR antibody. We characterized the conjugation efficiency of the GNRs by comparing the efficiency of antibody binding and the photothermal effect of the GNRs before and after conjugation. We demonstrate that the binding efficiency of the antibodies conjugated to the PEGylated GNRs is comparable to the binding efficiency of the unmodified antibodies and 33.9% greater than PEGylated antibody-GNR conjugates as reported by Liao and Hafner (2005). In addition, cell death by NIRPTT was sufficient to kill nearly 90% of tumor cells, which is comparable to NIRPTT with GNRs alone confirming that NIRPTT using GNRs is not compromised by conjugation of GNRs to antibodies.


Nanoscale ◽  
2017 ◽  
Vol 9 (25) ◽  
pp. 8555-8559 ◽  
Author(s):  
R. Joseph Fortenbaugh ◽  
Benjamin J. Lear

2009 ◽  
Vol 86 (4-6) ◽  
pp. 865-867 ◽  
Author(s):  
Yi-Ting Cheng ◽  
Rouh-Huey Uang ◽  
Yu-Ming Wang ◽  
Kuo-Chan Chiou ◽  
Tzong-Ming Lee

RSC Advances ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 5680-5685 ◽  
Author(s):  
Zhenxing Cao ◽  
Rongguo Wang ◽  
Lifeng Hao ◽  
Weicheng Jiao ◽  
Fan Yang ◽  
...  

In this paper, interfacial healing was achieved in carbon fiber composites via local heating generated by photothermal effect of gold nanoparticles (Au NPs).


Sign in / Sign up

Export Citation Format

Share Document