Preparation and in vitro evaluation of doxorubicin loaded alendronate modified hollow gold nanoparticles for bone-targeted chemo-photothermal therapy

2020 ◽  
Vol 10 (11) ◽  
pp. 1950-1959
Author(s):  
Lei Yang ◽  
Yumin Hu ◽  
Yuanfen Liu ◽  
Yanyan Liu ◽  
Si Miao ◽  
...  

The treatment of malignant bone tumors (including primary bone tumors and metastatic bone tumors) has always been a clinical challenge. The purpose of this study is to design a bone-targeted nano-carrier with photothermal effect to achieve chemo-photothermal therapy (CPT), which allows the minimal use of photothermal agents and chemical drugs to target bone tumors. Alendronate modified hollow gold nanoparticles (HGNPs- ALN) were synthesized using mercapto polyethylene glycol carboxyl (SH-PEG2000-COOH) as the connecting arm, fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) data show that HGNPs-ALN with a particle size of about 80 nm has been successfully synthesized. The hydroxyapatite affinity experiment in vitro indicated that HGNPs-ALN exhibited a high affinity to bone. In addition, the temperature of HGNPs-ALN under near-infrared laser irradiation can rise to 53 °C, which can achieve effective photothermal therapy for bone tumors. Bone-targeted hollow gold nanoparticles (DOX@HGNPs-ALN) loaded with doxorubicin hydrochloride (DOX) were synthesized by one-pot method. By comparing the stability and drug loading of HGNPs-ALN, it was concluded that the optimal mass ratio of HGNPs-ALN (calculated by the amount of gold) to DOX was about 1:2. HGNPs-ALN and DOX@HGNPs-ALN both have good photothermal stability and photothermal transformation properties, and confirmed the safety of HGNPs on human osteosarcoma cells. MTT experiments showed that DOX@HGNPs-ALN had the strongest killing effect on MG-63 osteosarcoma cells under laser irradiation (the killing rate is about 65%). According to these results, it can be considered that DOX@HGNPs-ALN has the potential of CPT synergistic targeting therapy for bone tumors.

2019 ◽  
Author(s):  
Jun Wang ◽  
Na Chen ◽  
Kai Liu ◽  
Yu Tu ◽  
Weitao Yang ◽  
...  

Abstract Background: Owing to the tunability of longitudinal surface plasmon resonance (LSPR), ease of synthesizing small size and excellent stability, AuNRs have been developed as photothermal agents for cancer therapy. However, PTT alone could not kill cancer cells completely due to the local heterogeneous distribution of heat in tumors, penetration depth of light, light scattering and absorption. In addition, the treatment systems based on AuNRs hold disadvantages of loading one antitumor drug or a low therapeutic efficiency. Therefore, the construction of the AuNRs theranostic system to achieve imaging-guided dual drug delivery and enhanced photothermal therapy for tumor still remains a great challenge.Methods: The AuNRs were prepared using a seedless method. A mesoporous silica shell layer was coated on the surface of the AuNRs by sol-gel method. Double anticancer drugs, DOX and Btz, were loaded into the AuNRs@MSN nanoparticles through physical absorption and covalent conjugation, respectively.Results: The release of DOX and Btz is found pH/thermal dual responsive in vitro. Compared with AuNRs@MSN, PDA-AuNRs@MSN exhibits an increased near-infrared (NIR) absorption at 808 nm and an enhanced photothermal effect. In contrast to chemotherapy or photothermal therapy alone, the integrated D/B-PDA-AuNRs@MSN nanoparticles show higher cell apoptosis and enhanced tumor treatment efficacy in vitro and in vivo.Conclusions: In this study, we designed a double-drug loading, enhanced chemo/photothermal therapy and pH/thermal responsive drug delivery system for photoacoustic (PA) imaging-guided tumor therapy. We believe that the multifunctional D/B-PDA-AuNRs@MSN theranostic probe could serve as an effective probe for the treatment of cancers.


Author(s):  
Ken Yoshida ◽  
Hideya Yamazaki ◽  
Shuji Ozeki ◽  
Takehiro Inoue ◽  
Yasuo Yoshioka ◽  
...  

2021 ◽  
Vol 16 (7) ◽  
pp. 1029-1036
Author(s):  
Hongzhu Wang ◽  
Mengxun Chen ◽  
Liping Song ◽  
Youju Huang

A key challenge for nanoparticles-based drug delivery system is to achieve manageable drug release in tumour cell. In this study, a versatile system combining photothermal therapy and controllable drug release for tumour cells using temperature-sensitive block copolymer coupled Au NRs@SiO2 is reported. While the Au NRs serve as hyperthermal agent and the mesoporous silica was used to improve the drug loading and decrease biotoxicity. The block copolymer acted as “gatekeeper” to regulate the release of model drug (Doxorubicin hydrochloride, DOX). Through in vivo and in vitro experiments, we achieved the truly controllable drug release and photothermal therapy with the collaborative effect of the three constituents of the nanocomposites. The reported nanocomposites pave the way to high-performance controllable drug release and photothermal therapy system.


Nanomedicine ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 219-234 ◽  
Author(s):  
Isabel Ortiz de Solorzano ◽  
Martin Prieto ◽  
Gracia Mendoza ◽  
Victor Sebastian ◽  
Manuel Arruebo

Aim: Developing hybrid poly(N-isopropylacrylamide)-based nanogels decorated with plasmonic hollow gold nanoparticles for on-demand drug delivery and their physico-chemical characterization, bupivacaine loading and release ability upon light irradiation, and in vitro cell viability. Materials & methods: Hollow gold nanoparticles were prepared by galvanic replacement reaction; poly(N-isopropylacrylamide)-based nanogels were synthesized via precipitation polymerization and their electrostatic coupling was accomplished using poly(allylamine hydrochloride) as cationic polyelectrolyte linker. Results & conclusion: Colloidal stability of the resulted hybrid nanovectors was demonstrated under physiological conditions together with their fast response and excellent heating efficiency after light stimulation, indicating their potential use as triggered drug-delivery vectors. Moreover, their influence on cell metabolism and cell cycle under subcytotoxic doses were studied showing excellent cytocompatibility.


2020 ◽  
Vol 11 (13) ◽  
pp. 5108-5114 ◽  
Author(s):  
Juan Carlos Castro-Palacio ◽  
Konstantin Ladutenko ◽  
Alejandro Prada ◽  
Guillermo González-Rubio ◽  
Pablo Díaz-Núñez ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 463 ◽  
Author(s):  
Wu ◽  
Fu ◽  
Zhou ◽  
Wang ◽  
Feng ◽  
...  

Rapid increase of antimicrobial resistance has become an urgent threat to global public health. In this research, since photothermal therapy is a potential antibacterial strategy, which is less likely to cause resistance, a metal–organic framework-based chemo-photothermal combinational system was constructed. Zeolitic imidazolate frameworks-8 (ZIF-8), a porous carrier with unique features such as high loading and pH-sensitive degradation, was synthesized, and then encapsulated photothermal agent indocyanine green (ICG). First, ICG with improved stability in ZIF-8 (ZIF-8-ICG) can effectively produce heat in response to NIR laser irradiation for precise, rapid, and efficient photothermal bacterial ablation. Meanwhile, Zn2+ ions released from ZIF-8 can inhibit bacterial growth by increasing the permeability of bacterial cell membrane and further strengthen photothermal therapy efficacy by reducing the heat resistance of bacteria. Study showed that bacteria suffered from significant changes in morphology after treatment with ZIF-8-ICG under laser irradiation. The combinational chemo-hyperthermia therapy of ZIF-8-ICG could thoroughly ablate murine subcutaneous abscess induced by methicillin-resistant Staphylococcus aureus (MRSA), exhibiting a nearly 100% bactericidal ratio. Both in vitro and in vivo safety evaluation confirmed that ZIF-8-ICG was low toxic. Overall, our researches demonstrated that ZIF-8-ICG has great potential to be served as an alternative to antibiotics in combating multidrug-resistant bacterial pathogens.


2016 ◽  
Vol 36 (6) ◽  
pp. 3545-3551 ◽  
Author(s):  
Jianwei Zhu ◽  
Ya Yang ◽  
Sihong Liu ◽  
Huihua Xu ◽  
Yong Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document