Effect of Vanadium on the Microstructure and Mechanical Properties of Laminated Nb–V/Al Composites Fabricated by Solid-Phase Technology

2021 ◽  
Vol 2021 (4) ◽  
pp. 367-372
Author(s):  
D. V. Prokhorov ◽  
V. P. Korzhov ◽  
A. N. Nekrasov
2016 ◽  
Vol 697 ◽  
pp. 510-514 ◽  
Author(s):  
Feng Rui Zhai ◽  
Ke Shan ◽  
Ruo Meng Xu ◽  
Min Lu ◽  
Zhong Zhou Yi ◽  
...  

In the present paper, the ZrB2/h-BN multiphase ceramics were fabricated by SPS (spark plasma sintering) technology at lower sintering temperature using h-BN, ZrO2, AlN and Si as raw materials and B2O3 as a sintering aid. The phase constitution and microstructure of specimens were analyzed by XRD and SEM. Moreover, the effects of different sintering pressures on the densification, microstructure and mechanical properties of ZrB2/h-BN multiphase ceramics were also systematically investigated. The results show that the ZrB2 was obtained through solid phase reaction at different sintering pressures, and increasing sintering pressure could accelerate the formation of ZrB2 phase. As the sintering pressure increasing, the fracture strength and toughness of the sintered samples had a similar increasing tendency as the relative density. The better comprehensive properties were obtained at given sintering pressure of 50MPa, and the relative density, fracture strength and toughness reached about 93.4%, 321MPa and 3.3MPa·m1/2, respectively. The SEM analysis shows that the h-BN grains were fine and uniform, and the effect of sintering pressure on grain size was inconspicuous. The distribution of grain is random cross array, and the fracture texture was more obvious with the increase of sintering pressure. The fracture mode of sintered samples remained intergranular fracture mechanism as sintering pressure changed, and the grain refinement, grain pullout and crack deflection helped to increase the mechanical properties.


2020 ◽  
Author(s):  
Wei Lian ◽  
Yan Liu ◽  
Wenjie Wang ◽  
Yangtao Dong ◽  
Sheng Wang ◽  
...  

Abstract Mullite based porous ceramics were successfully prepared by using a solid-phase method with gangue, slime and sawdust as raw materials. The effects of the content of glass powder and calcining temperature on microstructure and mechanical properties of the samples were systematically studied. It is found that glass powder can prevent the formation of Kyanite and reduce the synthesis temperature of mullite. The samples with 4% glass powder have a large amount of mullite calcined at 1150°C for 3h. Meanwhile, alumina in the sample is completely converted into mullite at 1180°C for 3h. Mullite content reaches 64.2wt%. The minimum apparent porosity is 31.22%, while the maximum volume density and diameter shrinkage are 1.74g/cm 3 and 8.48%, respectively. The ratio of pores of <8μm to those of 8~20μm is varied from 7:2 to 2:7, due to the addition of the glass powder. With increasing content of mullite, the flexural properties of the samples are increased from 7.7MPa to 28.36MPa. Therefore, with solid wastes as the resource, the porous ceramics have a bright prospect.


2017 ◽  
Vol 34 (7) ◽  
pp. 876-884 ◽  
Author(s):  
Yao Zhu ◽  
Maoliang Hu ◽  
Dianjun Wang ◽  
Hongyu Xu ◽  
Ye Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document