Development of the formulation for a detergent composition based on mixture of surfactants and binary complex former

2017 ◽  
Vol 51 (5) ◽  
pp. 804-808
Author(s):  
E. F. Bukanova ◽  
I. M. Agayants ◽  
A. A. Lapshin ◽  
I. I. Chuparin
Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1794
Author(s):  
Parisa Nematollahi ◽  
Erik C. Neyts

Immobilization of two single transition metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. If the substrate contains more than one vacancy site, the combination of TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bi-metal composition. By means of DFT calculations, we modeled three dissimilar bi-metal atoms (Ti, Mn, and Cu) doped into the six porphyrin-like cavities of porous C24N24 fullerene, considering different bi-metal distribution patterns for each binary complex, viz. TixCuz@C24N24, TixMny@C24N24, and MnyCuz@C24N24 (with x, y, z = 0–6). We elucidate whether controlling the distribution of bi-metal atoms into the C24N24 cavities can alter their catalytic activity toward CO2, NO2, H2, and N2 gas capture. Interestingly, Ti2Mn4@C24N24 and Ti2Cu4@C24N24 complexes showed the highest activity and selectively toward gas capture. Our findings provide useful information for further design of novel few-atom carbon-nitride-based catalysts.


Genetics ◽  
1988 ◽  
Vol 119 (3) ◽  
pp. 477-484
Author(s):  
W F Wu ◽  
S Christiansen ◽  
M Feiss

Abstract The large subunit of phage lambda terminase, gpA, the gene product of the phage A gene, interacts with the small subunit, gpNul, to form functional terminase. Terminase binds to lambda DNA at cosB to form a binary complex. The terminase:DNA complex binds a prohead to form a ternary complex. Ternary complex formation involves an interaction of the prohead with gpA. The amino terminus of gpA contains a functional domain for interaction with gpNul, and the carboxy-terminal 38 amino acids of gpA contain a functional domain for prohead binding. This information about the structure of gpA was obtained through the use of hybrid phages resulting from recombination between lambda and the related phage 21. lambda and 21 encode terminases that are analogous in structural organization and have ca. 60% sequence identity. In spite of these similarities, lambda and 21 terminases differ in specificity for DNA binding, subunit assembly, and prohead binding. A lambda-21 hybrid phage produces a terminase in which one of the subunits is chimeric and had recombinant specificities. In the work reported here; a new hybrid, lambda-21 hybrid 67, is characterized. lambda-21 hybrid 67 is the result of a crossover between lambda and 21 in the large subunit genes, such that the DNA from the left chromosome end is from 21, including cosB phi 21, the 1 gene, and the first 48 codons for the 2 gene. The rest of the hybrid 67 chromosome is lambda DNA, including 593 codons of the A gene. The chimeric gp2/A of hybrid 67 binds gp1 to form functional terminase.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Zhang ◽  
Diyin Luo ◽  
Yu Li ◽  
Vanja Perčulija ◽  
Jing Chen ◽  
...  

AbstractCas12i is a newly identified member of the functionally diverse type V CRISPR-Cas effectors. Although Cas12i has the potential to serve as genome-editing tool, its structural and functional characteristics need to be investigated in more detail before effective application. Here we report the crystal structures of the Cas12i1 R-loop complexes before and after target DNA cleavage to elucidate the mechanisms underlying target DNA duplex unwinding, R-loop formation and cis cleavage. The structure of the R-loop complex after target DNA cleavage also provides information regarding trans cleavage. Besides, we report a crystal structure of the Cas12i1 binary complex interacting with a pseudo target oligonucleotide, which mimics target interrogation. Upon target DNA duplex binding, the Cas12i1 PAM-interacting cleft undergoes a remarkable open-to-closed adjustment. Notably, a zipper motif in the Helical-I domain facilitates unzipping of the target DNA duplex. Formation of the 19-bp crRNA-target DNA strand heteroduplex in the R-loop complexes triggers a conformational rearrangement and unleashes the DNase activity. This study provides valuable insights for developing Cas12i1 into a reliable genome-editing tool.


2021 ◽  
Author(s):  
Hongwu Peng ◽  
Shanglin Zhou ◽  
Scott Weitze ◽  
Jiaxin Li ◽  
Sahidul Islam ◽  
...  

1992 ◽  
Vol 267 (34) ◽  
pp. 24841-24847
Author(s):  
D.W. Borhani ◽  
T.M. Harter ◽  
J.M. Petrash

2017 ◽  
Vol 110 (10) ◽  
pp. 103901 ◽  
Author(s):  
Koji Yoshida ◽  
Toyoto Sato ◽  
Atsushi Unemoto ◽  
Motoaki Matsuo ◽  
Tamio Ikeshoji ◽  
...  

2007 ◽  
Vol 402 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Ruibai Luo ◽  
Bijan Ahvazi ◽  
Diana Amariei ◽  
Deborah Shroder ◽  
Beatriz Burrola ◽  
...  

Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are enzymes that catalyse the hydrolysis of GTP bound to the small GTP-binding protein Arf. They have also been proposed to function as Arf effectors and oncogenes. We have set out to characterize the kinetics of the GAP-induced GTP hydrolysis using a truncated form of ASAP1 [Arf GAP with SH3 (Src homology 3) domain, ankyrin repeats and PH (pleckstrin homology) domains 1] as a model. We found that ASAP1 used Arf1-GTP as a substrate with a kcat of 57±5 s−1 and a Km of 2.2±0.5 μM determined by steady-state kinetics and a kcat of 56±7 s−1 determined by single-turnover kinetics. Tetrafluoroaluminate (AlF4−), which stabilizes complexes of other Ras family members with their cognate GAPs, also stabilized a complex of Arf1-GDP with ASAP1. As anticipated, mutation of Arg-497 to a lysine residue affected kcat to a much greater extent than Km. Changing Trp-479, Iso-490, Arg-505, Leu-511 or Asp-512 was predicted, based on previous studies, to affect affinity for Arf1-GTP. Instead, these mutations primarily affected the kcat. Mutants that lacked activity in vitro similarly lacked activity in an in vivo assay of ASAP1 function, the inhibition of dorsal ruffle formation. Our results support the conclusion that the Arf GAP ASAP1 functions in binary complex with Arf1-GTP to induce a transition state towards GTP hydrolysis. The results have led us to speculate that Arf1-GTP–ASAP1 undergoes a significant conformational change when transitioning from the ground to catalytically active state. The ramifications for the putative effector function of ASAP1 are discussed.


Sign in / Sign up

Export Citation Format

Share Document