related phage
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 22 (21) ◽  
pp. 11381
Author(s):  
Jens A. Hammerl ◽  
Andrea Barac ◽  
Philipp Erben ◽  
Julius Fuhrmann ◽  
Ashish Gadicherla ◽  
...  

Yersinia (Y.) enterocolitica and Y. pseudotuberculosis are important zoonotic agents which can infect both humans and animals. To combat these pathogens, the application of strictly lytic phages may be a promising tool. Since only few Yersinia phages have been described yet, some of which demonstrated a high specificity for certain serotypes, we isolated two phages from game animals and characterized them in terms of their morphology, host specificity, lytic activity on two bio-/serotypes and genome composition. The T7-related podovirus vB_YenP_Rambo and the myovirus vB_YenM_P281, which is very similar to a previously described phage PY100, showed a broad host range. Together, they lysed all the 62 tested pathogenic Y. enterocolitica strains belonging to the most important bio-/serotypes in Europe. A cocktail containing these two phages strongly reduced cultures of a bio-/serotype B4/O:3 and a B2/O:9 strain, even at very low MOIs (multiplicity of infection) and different temperatures, though, lysis of bio-/serotype B2/O:9 by vB_YenM_P281 and also by the related phage PY100 only occurred at 37 °C. Both phages were additionally able to lyse various Y. pseudotuberculosis strains at 28 °C and 37 °C, but only when the growth medium was supplemented with calcium and magnesium cations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dariusz Czernecki ◽  
Frédéric Bonhomme ◽  
Pierre-Alexandre Kaminski ◽  
Marc Delarue

AbstractCyanophage S-2L is known to profoundly alter the biophysical properties of its DNA by replacing all adenines (A) with 2-aminoadenines (Z), which still pair with thymines but with a triple hydrogen bond. It was recently demonstrated that a homologue of adenylosuccinate synthetase (PurZ) and a dATP triphosphohydrolase (DatZ) are two important pieces of the metabolism of 2-aminoadenine, participating in the synthesis of ZTGC-DNA. Here, we determine that S-2L PurZ can use either dATP or ATP as a source of energy, thereby also depleting the pool of nucleotides in dATP. Furthermore, we identify a conserved gene (mazZ) located between purZ and datZ genes in S-2L and related phage genomes. We show that it encodes a (d)GTP-specific diphosphohydrolase, thereby providing the substrate of PurZ in the 2-aminoadenine synthesis pathway. High-resolution crystal structures of S-2L PurZ and MazZ with their respective substrates provide a rationale for their specificities. The Z-cluster made of these three genes – datZ, mazZ and purZ – was expressed in E. coli, resulting in a successful incorporation of 2-aminoadenine in the bacterial chromosomal and plasmidic DNA. This work opens the possibility to study synthetic organisms containing ZTGC-DNA.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 959
Author(s):  
Katrine Wacenius Skov Alanin ◽  
Laura Milena Forero Junco ◽  
Jacob Bruun Jørgensen ◽  
Tue Kjærgaard Nielsen ◽  
Morten Arendt Rasmussen ◽  
...  

Isolating single phages using plaque assays is a laborious and time-consuming process. Whether single isolated phages are the most lyse-effective, the most abundant in viromes, or those with the highest ability to make plaques in solid media is not well known. With the increasing accessibility of high-throughput sequencing, metaviromics is often used to describe viruses in environmental samples. By extracting and sequencing metaviromes from organic waste with and without exposure to a host-of-interest, we show a host-related phage community’s shift, as well as identify the most enriched phages. Moreover, we isolated plaque-forming single phages using the same virome–host matrix to observe how enrichments in liquid media correspond to the metaviromic data. In this study, we observed a significant shift (p = 0.015) of the 47 identified putative Pseudomonas phages with a minimum twofold change above zero in read abundance when adding a Pseudomonas syringae DC3000 host. Surprisingly, it appears that only two out of five plaque-forming phages from the same organic waste sample, targeting the Pseudomonas strain, were highly abundant in the metavirome, while the other three were almost absent despite host exposure. Lastly, our sequencing results highlight how long reads from Oxford Nanopore elevates the assembly quality of metaviromes, compared to short reads alone.


2021 ◽  
Author(s):  
Katrine Wacenius Skov Alanin ◽  
Laura Milena Forero Junco ◽  
Jacob Bruun Jørgensen ◽  
Tue Kjærgaard Nielsen ◽  
Morten Arendt Rasmussen ◽  
...  

AbstractIsolating single phages using plaque assays is a laborious and time-consuming process. Whether single isolated phages are the most lyse-effective, the most abundant in viromes, or the ones with highest ability to plaque on solid media is not well known. With the increasing accessibility of high-throughput sequencing, metaviromics is often used to describe viruses in envi-ronmental samples. By extracting and sequencing metaviromes from organic waste with and without exposure to a host-of-interest, we show a host-related phage community’s shift, as well as identify the most enriched phages. Moreover, we isolated plaque-forming single phages using the same virome-host matrix to observe how enrichments in liquid media corresponds to the metaviromic data. In this study, we observed a significant shift (p = 0.015) of the 47 identified putative Pseudomonas phages with a minimum 2-fold change above 0 in read abundance when adding a Pseudomonas syringae DC3000 host. Surprisingly, it appears that only two out of five plaque-forming phages from the same organic waste sample, targeting the Pseudomonas strain, was highly abundant in the metavirome, while the other three were almost absent despite host exposure. Lastly, our sequencing results highlights how long reads from Oxford Nanopore elevates the assembly quality of metaviromes, compared to short reads alone.


2021 ◽  
Vol 11 (4) ◽  
pp. 1602
Author(s):  
Lihua Xu ◽  
Dengfeng Li ◽  
Yigang Tong ◽  
Jing Fang ◽  
Rui Yang ◽  
...  

Vibrio mediterranei 117-T6 is extensively pathogenic to several Pyropia species, leading to the death of conchocelis. In this study, the first V. mediterranei phage (named Vibrio phage Yong-XC31, abbreviated as Yong-XC31) was isolated. Yong-XC31 is a giant phage containing an icosahedral head about 113 nm in diameter and a contractible tail about 219 nm in length. The latent period of Yong-XC31 is 30 min, and burst size is 64,227. Adsorption rate of Yong-XC31 to V. mediterranei 117-T6 can reach 93.8% in 2 min. The phage genome consisted of a linear, double-stranded 290,532 bp DNA molecule with a G + C content of 45.87%. Bioinformatic analyses predicted 318 open reading frames (ORFs), 80 of which had no similarity to protein sequences in current (26 January 2021) public databases. Yong-XC31 shared the highest pair-wise average nucleotide identity (ANI) value of 58.65% (below the ≥95% boundary to define a species) and the highest nucleotide sequence similarity of 11.71% (below the >50% boundary to define a genus) with the closest related phage. In the proteomic tree based on genome-wide sequence similarities, Yong-XC31 and three unclassified giant phages clustered in a monophyletic clade independently between the family Drexlerviridae and Herelleviridae. Results demonstrated Yong-XC31 as a new evolutionary lineage of phage. We propose a new phage family in Caudovirales order. This study provides new insights and fundamental data for the study and application of giant phages.


Author(s):  
Maarten Boon ◽  
Elke De Zitter ◽  
Jeroen De Smet ◽  
Jeroen Wagemans ◽  
Marleen Voet ◽  
...  

Abstract Bacterial viruses encode a vast number of ORFan genes that lack similarity to any other known proteins. Here, we present a 2.20 Å crystal structure of N4-related Pseudomonas virus LUZ7 ORFan gp14, and elucidate its function. We demonstrate that gp14, termed here as Drc (ssDNA-binding RNA Polymerase Cofactor), preferentially binds single-stranded DNA, yet contains a structural fold distinct from other ssDNA-binding proteins (SSBs). By comparison with other SSB folds and creation of truncation and amino acid substitution mutants, we provide the first evidence for the binding mechanism of this unique fold. From a biological perspective, Drc interacts with the phage-encoded RNA Polymerase complex (RNAPII), implying a functional role as an SSB required for the transition from early to middle gene transcription during phage infection. Similar to the coliphage N4 gp2 protein, Drc likely binds locally unwound middle promoters and recruits the phage RNA polymerase. However, unlike gp2, Drc does not seem to need an additional cofactor for promoter melting. A comparison among N4-related phage genera highlights the evolutionary diversity of SSB proteins in an otherwise conserved transcription regulation mechanism.


mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Lin-Xing Chen ◽  
Yanlin Zhao ◽  
Katherine D. McMahon ◽  
Jiro F. Mori ◽  
Gerdhard L. Jessen ◽  
...  

ABSTRACT Fonsibacter (LD12 subclade) is among the most abundant bacterioplankton in freshwater ecosystems. These bacteria belong to the order Pelagibacterales (SAR11) and are related to Pelagibacter (marine SAR11), which dominates many marine habitats. Although a few Pelagibacter phage (Pelagiphage) have been described, no phage that infect Fonsibacter have been reported. In this study, we describe two groups of Podoviridae phage that infect Fonsibacter. A complete Fonsibacter genome containing a prophage was reconstructed from metagenomic data. A circularized and complete genome related to the prophage, referred to as uv-Fonsiphage-EPL (lysogenic strategy), shows high similarity to marine Pelagiphage HTVC025P. Additionally, we reconstructed three complete genomes and one draft genome of phage related to marine Pelagiphage HTVC010P and predicted a lytic strategy. The similarity in codon usage and cooccurrence patterns of HTVC010P-related phage and Fonsibacter suggested that these phage infect Fonsibacter. Similar phage were detected in Lake Mendota, Wisconsin, where Fonsibacter is also present. A search of related phage revealed the worldwide distribution of some genotypes in freshwater ecosystems, suggesting their substantial role in shaping indigenous microbial assemblages and influence on biogeochemical cycling. However, the uv-Fonsiphage-EPL and one group of HTVC010P-related phage have a more limited distribution in freshwater ecosystems. Overall, the findings provide insights into the genomic features of phage that infect Fonsibacter and expand understanding of the ecology and evolution of these important bacteria. IMPORTANCE Fonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and revealed their close relatedness to the phage infecting marine SAR11 members. Also, we illustrated that phage that infect Fonsibacter are widely distributed in freshwater habitats. In summary, the results contribute new insights into the ecology and evolution of Fonsibacter and phage.


2019 ◽  
Author(s):  
Lin-Xing Chen ◽  
Yan-Lin Zhao ◽  
Katherine D. McMahon ◽  
Jiro F. Mori ◽  
Gerdhard L. Jessen ◽  
...  

AbstractFonsibacter (LD12 subclade) are among the most abundant bacterioplankton in freshwater ecosystems. These bacteria belong to the order Pelagibacterales (SAR11) and are related to Pelagibacter (marine SAR11) that dominate many marine habitats. Although a handful of Pelagibacter phage (Pelagiphage) have been described, no phage that infect Fonsibacter have been reported. In this study, a complete Fonsibacter genome containing a prophage was reconstructed from metagenomic data. A circularized and complete genome related to the prophage, referred to as uv-Fonsiphage-EPL, shows high similarity to marine Pelagiphage HTVC025P. Additionally, we reconstructed three complete and one draft genome of phage related to marine Pelagiphage HTVC010P, and predicted a lytic strategy. The similarity in codon usage and co-occurrence patterns of HTVC010P-related phage and Fonsibacter suggested that these phage infect Fonsibacter. Similar phage were detected in Lake Mendota, Wisconsin, where Fonsibacter is also present. A search of related phage revealed the worldwide distribution of some genotypes in freshwater ecosystems, suggesting their substantial role in shaping indigenous microbial assemblages and influence on biogeochemical cycling. However, the uv-Fonsiphage-EPL and one lineage of HTVC010P-related phage have a more limited distribution in freshwater ecosystems. Based on this, and their close phylogenetic relatedness with Pelagiphage, we predict that they transitioned from saline into freshwater ecosystems comparatively recently. Overall, the findings provide insights into the genomic features of phage that infect Fonsibacter, and expand understanding of the ecology and evolution of these important bacteria.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Alla K. Golomidova ◽  
Eugene E. Kulikov ◽  
Anna V. Kudryavtseva ◽  
Andrey V. Letarov

ABSTRACTBacteriophage PGT2 was isolated from horse feces by using an uncharacterizedEscherichia colistrain, 7s, isolated from the same sample as the host. Bacteriophage PGT2 and a related phage, phiKT, which was previously isolated from the same source, are likely to represent a new genus within theAutographivirinaesubfamily of thePodoviridaefamily of viruses.


2016 ◽  
Vol 90 (22) ◽  
pp. 10284-10298 ◽  
Author(s):  
Julie A. Thomas ◽  
Andrea Denisse Benítez Quintana ◽  
Martine A. Bosch ◽  
Adriana Coll De Peña ◽  
Elizabeth Aguilera ◽  
...  

ABSTRACT Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge. The 240-kb SPN3US genome shares a core set of 91 genes with ϕKZ and related phages, ∼61 of which are virion genes, consistent with the expectation that virion complexity is an ancient, conserved feature. Nucleotide sequencing of 18 mutants enabled assignment of 13 genes as essential, information which could not have been determined by sequence-based searches for 11 genes. Proteome analyses of two SPN3US virion protein mutants with knockouts in 64 and 241 provided new insight into the composition and assembly of giant phage heads. The 64 mutant analyses revealed all the genetic determinants required for assembly of the SPN3US head and a likely head-tail joining role for gp64, and its homologs in related phages, due to the tailless-particle phenotype produced. Analyses of the mutation in 241 , which encodes an RNA polymerase β subunit, revealed that without this subunit, no other subunits are assembled into the head, and enabled identification of a “missing” β′ subunit domain. These findings support SPN3US as an excellent model for giant phage research, laying the groundwork for future analyses of their highly unusual virions, host interactions, and evolution. IMPORTANCE In recent years, there has been a paradigm shift in virology with the realization that extremely large viruses infecting prokaryotes (giant phages) can be found in many environments. A group of phages related to the prototype giant phage ϕKZ are of great interest due to their virions being among the most complex of prokaryotic viruses and their potential for biocontrol and phage therapy applications. Our understanding of the biology of these phages is limited, as a large proportion of their proteins have not been characterized and/or have been deemed putative without any experimental verification. In this study, we analyzed Salmonella phage SPN3US using a combination of genomics, genetics, and proteomics and in doing so revealed new information regarding giant phage head structure and assembly and virion RNA polymerase composition. Our findings demonstrate the suitability of SPN3US as a model phage for the growing group of phages related to ϕKZ.


Sign in / Sign up

Export Citation Format

Share Document