Velocity Distribution and the Moments of Turbulent Flow over a Sand-Gravel Mixture Bed

2021 ◽  
Vol 48 (6) ◽  
pp. 960-966
Author(s):  
Anurag Sharma

It is not possible to distinguish between the Momentum Transport and the Vorticity Transport theories of turbulent flow by measurements of the distribution of velocity in a fluid flowing under pressure through pipes or between parallel planes. Only simultaneous measurements of temperature and velocity distribution are capable of distinguishing between the two theories in these cases. On the other hand, it will be seen later that measurements of the distribution of velocity between concentric rotating cylinders are capable of distinguishing between the two theories; in fact the predictions of the two theories in this case are sharply contrasted and mutually exclusive.


1953 ◽  
Vol 20 (1) ◽  
pp. 109-114
Author(s):  
S. I. Pai

Abstract The Reynolds equations of motion of turbulent flow of incompressible fluid have been studied for turbulent flow between parallel plates. The number of these equations is finally reduced to two. One of these consists of mean velocity and correlation between transverse and longitudinal turbulent-velocity fluctuations u 1 ′ u 2 ′ ¯ only. The other consists of the mean pressure and transverse turbulent-velocity intensity. Some conclusions about the mean pressure distribution and turbulent fluctuations are drawn. These equations are applied to two special cases: One is Poiseuille flow in which both plates are at rest and the other is Couette flow in which one plate is at rest and the other is moving with constant velocity. The mean velocity distribution and the correlation u 1 ′ u 2 ′ ¯ can be expressed in a form of polynomial of the co-ordinate in the direction perpendicular to the plates, with the ratio of shearing stress on the plate to that of the corresponding laminar flow of the same maximum velocity as a parameter. These expressions hold true all the way across the plates, i.e., both the turbulent region and viscous layer including the laminar sublayer. These expressions for Poiseuille flow have been checked with experimental data of Laufer fairly well. It also shows that the logarithmic mean velocity distribution is not a rigorous solution of Reynolds equations.


1946 ◽  
Vol 13 (2) ◽  
pp. A85-A90
Author(s):  
Chi-Teh Wang

Abstract This paper follows the Prandtl conception of momentum transport and gives a critical examination of the so-called Prandtl-Nikuradse formula and the von Kármán formula for the velocity distribution of the turbulent flow in tubes or channels at large Reynolds number. It shows that both formulas would not give a good picture of the turbulent flow near the center of the conduit, and indeed they actually do not. A new formula for the velocity distribution is developed from a study of the mixing-length distribution across the section. This new formula checks quite well with the experiments and yields the same skin-friction formula as derived by von Kármán and Prandtl, which itself is in very good agreement with experiments.


1934 ◽  
Vol 11 (6) ◽  
pp. 770-779 ◽  
Author(s):  
G. N. Patterson

The motion of air through a channel of small exponential divergence has been investigated experimentally. A flow form derived by Blasius from theoretical considerations has been shown to exist in the range [Formula: see text] for the Reynolds number. The dependence of the general flow form on the initial velocity distribution where the divergence begins has been studied. It has been found that when this initial velocity distribution is parabolic, indicating a laminar motion in the throat of the channel, the flow form is symmetrical. Further investigations have shown that when the initial velocity distribution indicates that the motion near the walls in the throat of the channel lies in the transitional region between a laminar and a turbulent flow, then the flow form is unsymmetrical. Empirical equations have been obtained which give (1) the initial velocity distribution in the transitional region at R = 75.1, and (2) the motion near the walls where the divergence begins for Reynolds numbers lying in the range [Formula: see text].


1968 ◽  
Vol 90 (2) ◽  
pp. 342-350 ◽  
Author(s):  
H. J. Sneck

The “short bearing” equation of lubrication theory, modified to include the inertial effects, is used to study the influence of geometric deviations from the ideal. The turbulent nature of the flow is described by an isotropic apparent viscosity and a power-law velocity distribution. It is found that geometric deviations from the ideal are less influential than in laminar flow.


Sign in / Sign up

Export Citation Format

Share Document