Algorithm for Solving the Cauchy Problem for One Infinite-Dimensional System of Nonlinear Differential Equations

2019 ◽  
Vol 59 (2) ◽  
pp. 236-240
Author(s):  
A. Kh. Khanmamedov ◽  
A. M. Guseinov ◽  
M. M. Vekilov
2001 ◽  
Vol 432 ◽  
pp. 167-200 ◽  
Author(s):  
ODD M. FALTINSEN ◽  
ALEXANDER N. TIMOKHA

Two-dimensional nonlinear sloshing of an incompressible fluid with irrotational flow in a rectangular tank is analysed by a modal theory. Infinite tank roof height and no overturning waves are assumed. The modal theory is based on an infinite-dimensional system of nonlinear ordinary differential equations coupling generalized coordinates of the free surface and fluid motion associated with the amplitude response of natural modes. This modal system is asymptotically reduced to an infinite-dimensional system of ordinary differential equations with fifth-order polynomial nonlinearity by assuming sufficiently small fluid motion relative to fluid depth and tank breadth. When introducing inter-modal ordering, the system can be detuned and truncated to describe resonant sloshing in different domains of the excitation period. Resonant sloshing due to surge and pitch sinusoidal excitation of the primary mode is considered. By assuming that each mode has only one main harmonic an adaptive procedure is proposed to describe direct and secondary resonant responses when Moiseyev-like relations do not agree with experiments, i.e. when the excitation amplitude is not very small, and the fluid depth is close to the critical depth or small. Adaptive procedures have been established for a wide range of excitation periods as long as the mean fluid depth h is larger than 0.24 times the tank breadth l. Steady-state results for wave elevation, horizontal force and pitch moment are experimentally validated except when heavy roof impact occurs. The analysis of small depth requires that many modes have primary order and that each mode may have more than one main harmonic. This is illustrated by an example for h/l = 0.173, where the previous model by Faltinsen et al. (2000) failed. The new model agrees well with experiments.


2019 ◽  
Vol 25 (1) ◽  
pp. 37-60
Author(s):  
Antoon Pelsser ◽  
Kossi Gnameho

Abstract Backward stochastic differential equations (BSDEs) appear in many problems in stochastic optimal control theory, mathematical finance, insurance and economics. This work deals with the numerical approximation of the class of Markovian BSDEs where the terminal condition is a functional of a Brownian motion. Using Hermite martingales, we show that the problem of solving a BSDE is identical to solving a countable infinite-dimensional system of ordinary differential equations (ODEs). The family of ODEs belongs to the class of stiff ODEs, where the associated functional is one-sided Lipschitz. On this basis, we derive a numerical scheme and provide numerical applications.


2013 ◽  
Vol 11 (11) ◽  
Author(s):  
Andrzej Rozkosz

AbstractWe consider the Cauchy problem for an infinite-dimensional Ornstein-Uhlenbeck equation perturbed by gradient of a potential. We prove some results on existence and uniqueness of mild solutions of the problem. We also provide stochastic representation of mild solutions in terms of linear backward stochastic differential equations determined by the Ornstein-Uhlenbeck operator and the potential.


Author(s):  
Evgenii B. Kuznetsov ◽  
Sergey S. Leonov ◽  
Ekaterina D. Tsapko

Introduction. The paper provides an analysis of numerical methods for solving the Cauchy problem for nonlinear ordinary differential equations with contrast structures (interior layers). Similar equations simulate various applied problems of hydro- and aeromechanics, chemical kinetics, the theory of catalytic reactions, etc. An analytical solution to these problems is rarely obtained, and numerical procedure is related with significant difficulties associated with ill-conditionality in the neighborhoods of the boundary and interior layers. The aim of the paper is the scope analysis of traditional numerical methods for solving this class problems and approbation of alternative solution methods. Materials and methods. The traditional explicit Euler and fourth-order Runge-Kutta methods, as well as the implicit Euler method with constant and variable step sizes are used for the numerical solution of the Cauchy problem. The method of solution continuation with respect to the best argument is suggested as an alternative to use. The solution continuation method consists in replacing the original argument of the problem with a new one, measured along the integral curve of the problem. The transformation to the best argument allows obtaining the best conditioned Cauchy problem. Results. The computational difficulties arising when solving the equations with contrast structures by traditional explicit and implicit methods are shown on the example of the test problem solution. These difficulties are expressed in a significant decrease of the step size in the neighborhood of the boundary and interior layers. It leads to the increase of the computational time, as well as to the complication of the solving process for super stiff problems. The authenticity of the obtained results is confirmed by the comparison with the analytical solution and the works of other authors. Conclusions. The results of the computational experiment demonstrate the applicability of the traditional methods for solving the Cauchy problem for equations with contrast structures only at low stiffness. In other cases these methods are ineffective. It is shown that the method of solution continuation with respect to the best argument allows eliminating most of the disadvantages inherent to the original problem. It is reflected in decreasing the computational time and in increasing the solution accuracy. Keywords: contrast structures, method of solution continuation, the best argument, illconditionality, the Cauchy problem, ordinary differential equation For citation: Kuznetsov E. B., Leonov S. S., Tsapko E. D. The Parametrization of the Cauchy Problem for Nonlinear Differential Equations with Contrast Structures. Vestnik Mordovskogo universiteta = Mordovia University Bulletin. 2018; 28(4):486–510. DOI: https://doi.org/10.15507/0236-2910.028.201804.486-510 Acknowledgements: This work was supported by the Russian Science Foundation, project no. 18-19-00474.


2020 ◽  
Vol 8 (2) ◽  
pp. 122-126
Author(s):  
V. Slyusarchuk

When finding solutions of differential equations it is necessary to take into account the theorems on innovation and unity of solutions of equations. In case of non-fulfillment of the conditions of these theorems, the methods of finding solutions of the studied equations used in computational mathematics may give erroneous results. It should also be borne in mind that the Cauchy problem for differential equations may have no solutions or have an infinite number of solutions. The author presents two statements obtained by the author about the denseness of sets of the Cauchy problem without solutions (in the case of infinite-dimensional Banach space) and with many solutions (in the case of an arbitrary Banach space) in the set of all Cauchy problems. Using two examples of the Cauchy problem for differential equations, the imperfection of some methods of computational mathematics for finding solutions of the studied equations is shown.


Sign in / Sign up

Export Citation Format

Share Document