Thermocouple psychrometer for measurements of water potential in plant tissues by isopiestic method

2010 ◽  
Vol 57 (5) ◽  
pp. 732-738 ◽  
Author(s):  
A. A. Kotov ◽  
L. M. Kotova
Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 1
Author(s):  
IM Wood ◽  
IK Dart ◽  
HB So

This study examined two polyethylene glycol (PEG) polymers (PEG 6000 and PEG 10000) and compared measurements of water potential obtained with a thermocouple osmometer and thermocouple psychrometers at three temperatures (15, 25 and 35�C) and five osmdalities (50, 100, 200, 300 and 400 g/1000 g water). These were then compared with estimates of matric potential of three soils brought to equilibrium with PEG solutions of the same osmolalities. At the same osmolality and temperature the two PEG polymers gave essentially the same water potential. There was a significant effect of temperature on water potential which corresponded closely with changes in specific gravity of the PEG solution. There was a close correlation between the measurements of water potential of the PEG solutions obtained with the osmometer and the psychrometers (R = 0.99). However, the psychrometer gave increasingly lower values than the osmometer as water potential decreased. The differences in the measurements between the two methods are thought to be the result of design and calibration differences. The ease of use of the osmometer is such that it is recommended for routine use. The water potentials of the soil cores brought to equilibrium with the PEG 10 000 solution were linearly related to the water potentials of the PEG solutions estimated from both the osmometer and psychrometers (R2 = 0.84). However, there were clear deviations from a 1:l relationship. It was concluded that the results from the soil cores could not be used to determine which of the two instruments gave the more accurate measurement of water potential of PEG solutions.


1978 ◽  
Vol 8 (1) ◽  
pp. 73-80 ◽  
Author(s):  
M. A. Dixon ◽  
R. G. Thompson ◽  
D. S. Fensom

Simultaneous measurements of electrical resistance (or impedance (Z)) and water potential have been made on avocado Perseaamericana Mill. in the laboratory and on white spruce Piceaglauca (Moench) Voss in the field.A significant correlation was found between electrical impedance (corrected to standard temperature of 20 °C) and water potential of nearby leaves as measured by either pressure bomb or thermocouple psychrometer. When the resistance measurements were expressed as a percent of the measured maximum resistance reading the correlation with water potential was very nearly linear (correlation coefficient: Perseaamericana Mill., 0.98; Piceaglauca (Moench) Voss, 0.94). This relationship also seems to hold in Helianthusannuus L.The application of electrical resistance measurement techniques to these two plant systems has been shown to be a simple, nondestructive method of monitoring the water potential of such systems. The linear correlation between water potential and electrical resistance held whether the technique was applied on a tree at a fixed position through daily cycles, at different positions vertically up a tree, or under various degrees of hydration in a pressure bomb.


2005 ◽  
Vol 32 (6) ◽  
pp. 561 ◽  
Author(s):  
Ian F. Wardlaw

The importance of apoplastic water was confirmed for the leaves of a range of species by a comparison of tissue solute concentrations determined by the extrapolation of water potential isotherms to 100% relative water content (symplastic solute concentration at full turgor) and concentrations derived more directly from frozen / thawed tissue, where there is dilution of the symplastic water fraction by the apoplastic water fraction. A thermocouple psychrometer was used for both water potential and solute potential measurements. Parallel measurements of the apoplastic water content, estimated by the extrapolation of pressure–volume curves to zero (1 / water potential) with a pressure chamber and measurements based on the dilution method, with a thermocouple psychrometer, showed that the two methods gave similar results. This lends support to the conclusion that water is lost from the symplast and not from the apoplast of leaves when these are subjected to increasing pressure in a pressure chamber. However, where tissues or organs are air-dried the loss of water occurs from both the symplast and apoplast. The overall data support the conclusion that the apoplastic water should not be ignored in plant water relations studies, particularly when estimating cell turgor indirectly from the difference between water potential and cell solute concentration based on the analysis of frozen / thawed tissue.


1968 ◽  
Vol 48 (1) ◽  
pp. 89-95 ◽  
Author(s):  
S. J. Yang ◽  
E. de Jong

The thermocouple psychrometer technique was used to measure plant water stresses of wheat. The usefulness of this technique is limited due to the many precautions that must be taken. The β-ray absorption and relative turgidity were highly correlated (P = 0.01) with plant water potential, but the correlation changed with age. Relative turgidity gave a slightly better estimate of leaf water potential than β-ray absorption (r2 of 0.88 to 0.99 and 0.81 to 0.96 respectively). The β-ray technique has great promise because of its non-destructive nature.At soil water potentials higher than −10 atm, plant water potentials remained nearly constant, indicating that soil water was equally available. Temporary wilting occurred at soil water potentials of −35 to −40 atm.


Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 1 ◽  
Author(s):  
IM Wood ◽  
IK Dart ◽  
HB So

This study examined two polyethylene glycol (PEG) polymers (PEG 6000 and PEG 10000) and compared measurements of water potential obtained with a thermocouple osmometer and thermocouple psychrometers at three temperatures (15, 25 and 35�C) and five osmdalities (50, 100, 200, 300 and 400 g/1000 g water). These were then compared with estimates of matric potential of three soils brought to equilibrium with PEG solutions of the same osmolalities. At the same osmolality and temperature the two PEG polymers gave essentially the same water potential. There was a significant effect of temperature on water potential which corresponded closely with changes in specific gravity of the PEG solution. There was a close correlation between the measurements of water potential of the PEG solutions obtained with the osmometer and the psychrometers (R = 0.99). However, the psychrometer gave increasingly lower values than the osmometer as water potential decreased. The differences in the measurements between the two methods are thought to be the result of design and calibration differences. The ease of use of the osmometer is such that it is recommended for routine use. The water potentials of the soil cores brought to equilibrium with the PEG 10 000 solution were linearly related to the water potentials of the PEG solutions estimated from both the osmometer and psychrometers (R2 = 0.84). However, there were clear deviations from a 1:l relationship. It was concluded that the results from the soil cores could not be used to determine which of the two instruments gave the more accurate measurement of water potential of PEG solutions.


Sign in / Sign up

Export Citation Format

Share Document