cell turgor
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 12)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 7 (28) ◽  
pp. eabg4619
Author(s):  
Shouguang Huang ◽  
Meiqi Ding ◽  
M. Rob G. Roelfsema ◽  
Ingo Dreyer ◽  
Sönke Scherzer ◽  
...  

Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO2 and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl− and NO3− currents of −1 to −2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.


2021 ◽  
Author(s):  
Mahesh Patil ◽  
Prachi Pandey ◽  
Vadivelmurugan Irrulappan ◽  
Anuradha Singh ◽  
Praveen Verma ◽  
...  

Drought and leaf blight caused by the fungus Ascochyta rabiei often co-occur in chickpea (Cicer arietinum)-producing areas. While the responses of chickpea to either drought or A. rabiei infection have been extensively studied, their combined effect on plant defense mechanisms is unknown. Fine modulation of stress-induced signaling pathways under combined stress is an important stress adaptation mechanism that warrants a better understanding. Here we show that drought facilitates resistance against A. rabiei infection in chickpea. The analysis of proline levels and gene expression profiling of its biosynthetic pathway under combined drought and A. rabiei infection revealed the gene encoding proline dehydrogenase (CaProDH2) as a strong candidate conferring resistance to A. rabiei infection. Transcript levels of CaProDH2, pyrroline-5-carboxylate (P5C) quantification, and measurement of mitochondrial reactive oxygen species (ROS) production showed that fine modulation of the proline-P5C cycle determines the observed resistance. In addition, CaProDH2-silenced plants lost basal resistance to A. rabiei infection induced by drought, while overexpression of the gene conferred higher resistance to the fungus. We suggest that the drought-induced accumulation of proline in the cytosol helps maintain cell turgor and raises mitochondrial P5C contents by a CaProDH2-mediated step, which results in ROS production that boosts plant defense responses and confers resistance to A. rabiei infection. Our findings indicate that manipulating the proline-P5C pathway may be a possible strategy for improving stress tolerance in plants suffering from combined drought and A. rabiei infection.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Christophe Pagnout ◽  
Angelina Razafitianamaharavo ◽  
Bénédicte Sohm ◽  
Céline Caillet ◽  
Audrey Beaussart ◽  
...  

AbstractToxicity mechanisms of metal oxide nanoparticles towards bacteria and underlying roles of membrane composition are still debated. Herein, the response of lipopolysaccharide-truncated Escherichia coli K12 mutants to TiO2 nanoparticles (TiO2NPs, exposure in dark) is addressed at the molecular, single cell, and population levels by transcriptomics, fluorescence assays, cell nanomechanics and electrohydrodynamics. We show that outer core-free lipopolysaccharides featuring intact inner core increase cell sensitivity to TiO2NPs. TiO2NPs operate as membrane strippers, which induce osmotic stress, inactivate cell osmoregulation and initiate lipid peroxidation, which ultimately leads to genesis of membrane vesicles. In itself, truncation of lipopolysaccharide inner core triggers membrane permeabilization/depolarization, lipid peroxidation and hypervesiculation. In turn, it favors the regulation of TiO2NP-mediated changes in cell Turgor stress and leads to efficient vesicle-facilitated release of damaged membrane components. Remarkably, vesicles further act as electrostatic baits for TiO2NPs, thereby mitigating TiO2NPs toxicity. Altogether, we highlight antagonistic lipopolysaccharide-dependent bacterial responses to nanoparticles and we show that the destabilized membrane can generate unexpected resistance phenotype.


2020 ◽  
Author(s):  
Marc Abella ◽  
Lynnel Andruck ◽  
Gabriele Malengo ◽  
Michal Skruzny

AbstractMechanical forces are integral to many cellular processes, including clathrin-mediated endocytosis, a principal membrane trafficking route into the cell. During endocytosis, forces provided by endocytic proteins and the polymerizing actin cytoskeleton reshape the plasma membrane into a vesicle. Assessing force requirements of endocytic membrane remodelling is essential for understanding endocytosis. Here, we determined forces applied during endocytosis using FRET-based tension sensors integrated into the major force-transmitting protein Sla2 in yeast. We measured force of approx. 10 pN transmitted over Sla2 molecule, hence a total force of 450-1300 pN required for endocytic vesicle formation. Importantly, decreasing cell turgor pressure and plasma membrane tension reduced force requirements of endocytosis. The measurements in hypotonic conditions and mutants lacking BAR-domain membrane scaffolds then showed the limits of the endocytic force-transmitting machinery. Our study provides force values and force profiles critical for understanding the mechanics of endocytosis and potentially other key cellular membrane-remodelling processes.


2020 ◽  
Author(s):  
Marzena Małgorzata Kurowska

Tonoplast Intrinsic Proteins (TIP) are one of five subfamilies of aquaporins in higher plants. Plants typically contain a large number of TIP genes, ranging from 6 to 35 compared to humans. The molecular weight of the TIP subfamily members ranges from 25 to 28 kDa. Despite their sequence diversity, all TIP monomers have the same structure, which consists of six transmembrane helices and five inter-helical loops that form an hourglass shape with a central pore. Four monomers form tetramers, which are functional units in the membrane. TIPs form channels in the tonoplast that basically function as regulators of the intracellular water flow, which implies that they have a role in regulating cell turgor. TIPs are responsible for precisely regulating the movement of not only water, but also some small neutral molecules such as glycerol, urea, ammonia, hydrogen peroxide and formamide. The expression of TIPs may be affected by different environmental stresses, including drought, salinity and cold. TIPs expression is also altered by phytohormones and the appropriate cis-regulatory motifs are identified in the promotor region of the genes encoding TIPs in different plant species. It was shown that manipulating TIP-encoding genes expression in plants could have the potential to improve abiotic stress tolerance.


2020 ◽  
Vol 71 (22) ◽  
pp. 7103-7117
Author(s):  
Candelas Paniagua ◽  
Pablo Ric-Varas ◽  
Juan A García-Gago ◽  
Gloria López-Casado ◽  
Rosario Blanco-Portales ◽  
...  

Abstract To disentangle the role of polygalacturonase (PG) genes in strawberry softening, the two PG genes most expressed in ripe receptacles, FaPG1 and FaPG2, were down-regulated. Transgenic ripe fruits were firmer than those of the wild type when PG genes were silenced individually. Simultaneous silencing of both PG genes by transgene stacking did not result in an additional increase in firmness. Cell walls from ripe fruits were characterized by a carbohydrate microarray. Higher signals of homogalacturonan and rhamnogalacturonan I pectin epitopes in polysaccharide fractions tightly bound to the cell wall were observed in the transgenic genotypes, suggesting a lower pectin solubilization. At the transcriptomic level, the suppression of FaPG1 or FaPG2 alone induced few transcriptomic changes in the ripe receptacle, but the amount of differentially expressed genes increased notably when both genes were silenced. Many genes encoding cell wall-modifying enzymes were down-regulated. The expression of a putative high affinity potassium transporter was induced in all transgenic genotypes, indicating that cell wall weakening and loss of cell turgor could be linked. These results suggest that, besides the disassembly of pectins tightly linked to the cell wall, PGs could play other roles in strawberry softening, such as the release of oligogalacturonides exerting a positive feedback in softening.


2020 ◽  
Vol 21 (17) ◽  
pp. 6184
Author(s):  
Xiangzhong Sun ◽  
Yuping Qiu ◽  
Yang Peng ◽  
Juewei Ning ◽  
Guangjie Song ◽  
...  

Root hair elongation relies on polarized cell expansion at the growing tip. As a major osmotically active ion, potassium is expected to be continuously assimilated to maintain cell turgor during hair tip growth. However, due to the lack of practicable detection methods, the dynamics and physiological role of K+ in hair growth are still unclear. In this report, we apply the small-molecule fluorescent K+ sensor NK3 in Arabidopsis root hairs for the first time. By employing NK3, oscillating cytoplasmic K+ dynamics can be resolved at the tip of growing root hairs, similar to the growth oscillation pattern. Cross-correlation analysis indicates that K+ oscillation leads the growth oscillations by approximately 1.5 s. Artificially increasing cytoplasmic K+ level showed no significant influence on hair growth rate, but led to the formation of swelling structures at the tip, an increase of cytosolic Ca2+ level and microfilament depolymerization, implying the involvement of antagonistic regulatory factors (e.g., Ca2+ signaling) in the causality between cytoplasmic K+ and hair growth. These results suggest that, in each round of oscillating root hair elongation, the oscillatory cell expansion accelerates on the heels of cytosolic K+ increment, and decelerates with the activation of antagonistic regulators, thus forming a negative feedback loop which ensures the normal growth of root hairs.


Author(s):  
Angela K. Boysen ◽  
Laura T. Carlson ◽  
Bryndan P. Durham ◽  
Ryan D. Groussman ◽  
Frank O. Aylward ◽  
...  

AbstractLight is the primary input of energy into the sunlit ocean, driving daily oscillations in metabolism of primary producers. The consequences of this solar forcing have implications for the whole microbial community, yet in situ measurements of metabolites, direct products of cellular activity, over the diel cycle are scarce. We evaluated community-level biochemical consequences of diel oscillations in the North Pacific Subtropical Gyre by quantifying 79 metabolites in particulate organic matter in surface waters every four hours over eight days. Total particulate metabolite concentration peaked at dusk, even when normalized to biomass estimates. The concentrations of 70% of individual metabolites exhibited 24-hour periodicity. Despite the diverse organisms that use them, primary metabolites involved in anabolic processes and redox maintenance had significant 24-hour periodicity. Osmolytes exhibited the largest diel oscillations, implying rapid turnover and metabolic roles beyond cell turgor maintenance. Metatranscriptome analysis revealed the taxa involved in production and consumption of some metabolites, including the osmolyte trehalose. This compound displayed the largest diel oscillations in abundance and was likely produced by the nitrogen-fixing cyanobacterium Crocosphaera for energy storage. These findings demonstrate that paired measurements of particulate metabolites and transcripts resolve strategies microbes use to manage daily energy and redox oscillations.


2020 ◽  
Vol 71 (12) ◽  
pp. 3701-3709 ◽  
Author(s):  
Cara L McCauley ◽  
Scott A M McAdam ◽  
Ketaki Bhide ◽  
Jyothi Thimmapuram ◽  
Jo Ann Banks ◽  
...  

Abstract The perception pathway for endogenous auxin has been well described, yet the mode of action of synthetic auxin herbicides, used for >70 years, remains uncharacterized. We utilized transcriptomics and targeted physiological studies to investigate the unknown rapid response to synthetic auxin herbicides in the globally problematic weed species Erigeron canadensis. Synthetic auxin herbicide application consistently and rapidly down-regulated the photosynthetic machinery. At the same time, there was considerable perturbation to the expression of many genes related to phytohormone metabolism and perception. In particular, auxin herbicide application enhanced the expression of the key abscisic acid biosynthetic gene, 9-cis-epoxycarotenoid deoxygenase (NCED). The increase in NCED expression following auxin herbicide application led to a rapid biosynthesis of abscisic acid (ABA). This increase in ABA levels was independent of a loss of cell turgor or an increase in ethylene levels, both proposed triggers for rapid ABA biosynthesis. The levels of ABA in the leaf after auxin herbicide application continued to increase as plants approached death, up to >3-fold higher than in the leaves of plants that were drought stressed. We propose a new model in which synthetic auxin herbicides trigger plant death by the whole-scale, rapid, down-regulation of photosynthetic processes and an increase in ABA levels through up-regulation of NCED expression, independent of ethylene levels or a loss of cell turgor.


2019 ◽  
Vol 86 (2) ◽  
Author(s):  
Stuart W. Dyer ◽  
Joseph A. Needoba

ABSTRACT Previous work has demonstrated that the physical properties of intracellular bacterial gas vesicles (GVs) can be analyzed in vivo using pressure nephelometry. In analyzing the buoyant state of GV-containing cyanobacteria, hydrostatic pressure within a sample cell is increased in a stepwise manner, where the concomitant collapse of GVs due to pressure and the resultant decrease in suspended cells are detected by changes in nephelometric scattering. As the relative pressure at which GVs collapse is a function of turgor pressure and cellular osmotic gradients, pressure nephelometry is a powerful tool for assaying changes in metabolism that affect turgor, such as photosynthetic and osmoregulatory processes. We have developed an updated and automated pressure nephelometer that utilizes visible-infrared (Vis-IR) spectra to accurately quantify GV critical collapse pressure, critical collapse pressure distribution, and cell turgor pressure. Here, using the updated pressure nephelometer and axenic cultures of Microcystis aeruginosa PCC7806, we demonstrate that GV critical collapse pressure is stable during mid-exponential growth phase, introduce pressure-sensitive turbidity as a robust metric for the abundance of gas-vacuolate cyanobacteria, and demonstrate that pressure-sensitive turbidity is a more accurate proxy for abundance and growth than photopigment fluorescence. As cyanobacterium-dominated harmful algal bloom (cyanoHAB) formation is dependent on the constituent cells possessing gas vesicles, characterization of environmental cyanobacteria populations via pressure nephelometry is identified as an underutilized monitoring method. Applications of this instrument focus on physiological and ecological studies of cyanobacteria, for example, cyanoHAB dynamics and the drivers associated with cyanotoxin production in aquatic ecosystems. IMPORTANCE The increased prevalence of bloom-forming cyanobacteria and associated risk of exposure to cyanobacterial toxins through drinking water utilities and recreational waterways are growing public health concerns. Cost-effective, early-detection methodologies specific to cyanobacteria are crucial for mitigating these risks, with a gas vesicle-specific signal offering a number of benefits over photopigment fluorescence, including improved detection limits and discrimination against non-gas-vacuolate phototrophs. Here, we present a multiplexed instrument capable of quantifying the relative abundance of cyanobacteria based on the signal generated from the presence of intracellular gas vesicles specific to bloom-forming cyanobacteria. Additionally, as cell turgor can be measured in vivo via pressure nephelometry, the measurement furnishes information about the internal osmotic pressure of gas-vacuolate cyanobacteria, which relates to the metabolic state of the cell. Together these advances may improve routine waterway monitoring and the mitigation of human health threats due to cyanobacterial blooms.


Sign in / Sign up

Export Citation Format

Share Document