Structure of aerosol fields of the atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts

2017 ◽  
Vol 30 (1) ◽  
pp. 18-32 ◽  
Author(s):  
G. P. Kokhanenko ◽  
Yu. S. Balin ◽  
M. G. Klemasheva ◽  
I. E. Penner ◽  
S. V. Samoilova ◽  
...  
2021 ◽  
Author(s):  
Ginaldi Ari Nugroho ◽  
Kosei Yamaguchi ◽  
Eiichi Nakakita ◽  
Masayuki K. Yamamoto ◽  
Seiji Kawamura ◽  
...  

<p>Detailed observation of small scale perturbation in the atmospheric boundary layer during the first generated cumulus cloud are conducted. Our target is to study this small scale perturbation, especially related to the thermal activity at the first generated cumulus cloud. The observation is performed during the daytime on August 17, 2018, and September 03, 2018. Location is focused in the urban area of Kobe, Japan. High-resolution instruments such as Boundary Layer Radar, Doppler Lidar, and Time Lapse camera are used in this observation. Boundary Layer Radar, and Doppler Lidar are used for clear air observation. Meanwhile Time Lapse Camera are used for cloud existence observation. The atmospheric boundary layer structure is analyzed based on vertical velocity profile, variance, skewness, and estimated atmospheric boundary layer height. Wavelet are used to observe more of the period of the thermal activity. Furthermore, time correlation between vertical velocity time series from height 0.3 to 2 km and image pixel of generated cloud time series are also discussed in this study.</p>


Author(s):  
Ryoko ODA ◽  
Hironori IWAI ◽  
Shoken ISHII ◽  
Shinya SEKIZAWA ◽  
Kohei MIZUTANI ◽  
...  

2016 ◽  
Vol 162 (3) ◽  
pp. 503-522 ◽  
Author(s):  
Meng Huang ◽  
Zhiqiu Gao ◽  
Shiguang Miao ◽  
Fei Chen ◽  
Margaret A. LeMone ◽  
...  

2000 ◽  
Vol 9 (6) ◽  
pp. 329-338 ◽  
Author(s):  
Philippe. Drobinski ◽  
Julie Périn ◽  
Alain M. Dabas ◽  
Pierre H. Flamant ◽  
Robert A. Brown

2009 ◽  
Vol 26 (4) ◽  
pp. 673-688 ◽  
Author(s):  
Sara C. Tucker ◽  
Christoph J. Senff ◽  
Ann M. Weickmann ◽  
W. Alan Brewer ◽  
Robert M. Banta ◽  
...  

Abstract The concept of boundary layer mixing height for meteorology and air quality applications using lidar data is reviewed, and new algorithms for estimation of mixing heights from various types of lower-tropospheric coherent Doppler lidar measurements are presented. Velocity variance profiles derived from Doppler lidar data demonstrate direct application to mixing height estimation, while other types of lidar profiles demonstrate relationships to the variance profiles and thus may also be used in the mixing height estimate. The algorithms are applied to ship-based, high-resolution Doppler lidar (HRDL) velocity and backscattered-signal measurements acquired on the R/V Ronald H. Brown during Texas Air Quality Study (TexAQS) 2006 to demonstrate the method and to produce mixing height estimates for that experiment. These combinations of Doppler lidar–derived velocity measurements have not previously been applied to analysis of boundary layer mixing height—over the water or elsewhere. A comparison of the results to those derived from ship-launched, balloon-radiosonde potential temperature and relative humidity profiles is presented.


Sign in / Sign up

Export Citation Format

Share Document