Study of Thermal Activity in The Mixing Layer During First Generated Single Cloud by Using Combined Observation From Boundary Layer Radar, Doppler Lidar and Time Lapse Camera 

Author(s):  
Ginaldi Ari Nugroho ◽  
Kosei Yamaguchi ◽  
Eiichi Nakakita ◽  
Masayuki K. Yamamoto ◽  
Seiji Kawamura ◽  
...  

<p>Detailed observation of small scale perturbation in the atmospheric boundary layer during the first generated cumulus cloud are conducted. Our target is to study this small scale perturbation, especially related to the thermal activity at the first generated cumulus cloud. The observation is performed during the daytime on August 17, 2018, and September 03, 2018. Location is focused in the urban area of Kobe, Japan. High-resolution instruments such as Boundary Layer Radar, Doppler Lidar, and Time Lapse camera are used in this observation. Boundary Layer Radar, and Doppler Lidar are used for clear air observation. Meanwhile Time Lapse Camera are used for cloud existence observation. The atmospheric boundary layer structure is analyzed based on vertical velocity profile, variance, skewness, and estimated atmospheric boundary layer height. Wavelet are used to observe more of the period of the thermal activity. Furthermore, time correlation between vertical velocity time series from height 0.3 to 2 km and image pixel of generated cloud time series are also discussed in this study.</p>

2016 ◽  
Author(s):  
Katherine McCaffrey ◽  
Laura Bianco ◽  
Paul Johnston ◽  
James M. Wilczak

Abstract. Observations of turbulence in the planetary boundary layer are critical for developing and evaluating boundary layer parameterizations in mesoscale numerical weather prediction models. These observations, however, are expensive, and rarely profile the entire boundary layer. Using optimized configurations for 449 MHz and 915 MHz wind profiling radars during the eXperimental Planetary boundary layer Instrumentation Assessment, improvements have been made to the historical methods of measuring vertical velocity variance through the time series of vertical velocity, as well as the Doppler spectral width. Using six heights of sonic anemometers mounted on a 300-m tower, correlations of up to R2 = 0.74 are seen in measurements of the large-scale variances from the radar time series, and R2 = 0.79 in measurements of small-scale variance from radar spectral widths. The total variance, measured as the sum of the small- and large-scales agrees well with sonic anemometers, with R2 = 0.79. Correlation is higher in daytime, convective boundary layers than nighttime, stable conditions when turbulence levels are smaller. With the good agreement with the in situ measurements, highly-resolved profiles up to 2 km can be accurately observed from the 449 MHz radar, and 1 km from the 915 MHz radar. This optimized configuration will provide unique observations for the verification and improvement to boundary layer parameterizations in mesoscale models.


2017 ◽  
Vol 10 (3) ◽  
pp. 999-1015 ◽  
Author(s):  
Katherine McCaffrey ◽  
Laura Bianco ◽  
Paul Johnston ◽  
James M. Wilczak

Abstract. Observations of turbulence in the planetary boundary layer are critical for developing and evaluating boundary layer parameterizations in mesoscale numerical weather prediction models. These observations, however, are expensive and rarely profile the entire boundary layer. Using optimized configurations for 449 and 915 MHz wind profiling radars during the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA), improvements have been made to the historical methods of measuring vertical velocity variance through the time series of vertical velocity, as well as the Doppler spectral width. Using six heights of sonic anemometers mounted on a 300 m tower, correlations of up to R2 = 0. 74 are seen in measurements of the large-scale variances from the radar time series and R2 = 0. 79 in measurements of small-scale variance from radar spectral widths. The total variance, measured as the sum of the small and large scales, agrees well with sonic anemometers, with R2 = 0. 79. Correlation is higher in daytime convective boundary layers than nighttime stable conditions when turbulence levels are smaller. With the good agreement with the in situ measurements, highly resolved profiles up to 2 km can be accurately observed from the 449 MHz radar and 1 km from the 915 MHz radar. This optimized configuration will provide unique observations for the verification and improvement to boundary layer parameterizations in mesoscale models.


Author(s):  
Ryoko ODA ◽  
Hironori IWAI ◽  
Shoken ISHII ◽  
Shinya SEKIZAWA ◽  
Kohei MIZUTANI ◽  
...  

2018 ◽  
Vol 856 ◽  
pp. 135-168 ◽  
Author(s):  
S. T. Salesky ◽  
W. Anderson

A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly ($-z_{i}/L=3.1$) to highly convective ($-z_{i}/L=1082$) conditions (where$-z_{i}/L$is the bulk stability parameter formed from the boundary-layer depth$z_{i}$and the Obukhov length $L$) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from$\unicode[STIX]{x1D6FE}\approx 15^{\circ }$for weakly convective conditions to nearly vertical for highly convective conditions. As$-z_{i}/L$increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by Mathiset al.(J. Fluid Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.


2021 ◽  
Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 416 ◽  
Author(s):  
Astrid Lampert ◽  
Barbara Altstädter ◽  
Konrad Bärfuss ◽  
Lutz Bretschneider ◽  
Jesper Sandgaard ◽  
...  

Unmanned aerial systems (UAS) fill a gap in high-resolution observations of meteorological parameters on small scales in the atmospheric boundary layer (ABL). Especially in the remote polar areas, there is a strong need for such detailed observations with different research foci. In this study, three systems are presented which have been adapted to the particular needs for operating in harsh polar environments: The fixed-wing aircraft M 2 AV with a mass of 6 kg, the quadrocopter ALICE with a mass of 19 kg, and the fixed-wing aircraft ALADINA with a mass of almost 25 kg. For all three systems, their particular modifications for polar operations are documented, in particular the insulation and heating requirements for low temperatures. Each system has completed meteorological observations under challenging conditions, including take-off and landing on the ice surface, low temperatures (down to −28 ∘ C), icing, and, for the quadrocopter, under the impact of the rotor downwash. The influence on the measured parameters is addressed here in the form of numerical simulations and spectral data analysis. Furthermore, results from several case studies are discussed: With the M 2 AV, low-level flights above leads in Antarctic sea ice were performed to study the impact of areas of open water within ice surfaces on the ABL, and a comparison with simulations was performed. ALICE was used to study the small-scale structure and short-term variability of the ABL during a cruise of RV Polarstern to the 79 ∘ N glacier in Greenland. With ALADINA, aerosol measurements of different size classes were performed in Ny-Ålesund, Svalbard, in highly complex terrain. In particular, very small, freshly formed particles are difficult to monitor and require the active control of temperature inside the instruments. The main aim of the article is to demonstrate the potential of UAS for ABL studies in polar environments, and to provide practical advice for future research activities with similar systems.


2020 ◽  
Author(s):  
Yuliya Troitskaya ◽  
Alexander Kandaurov ◽  
Daniil Sergeev ◽  
Olga Ermakova ◽  
Dmitrii Kozlov ◽  
...  

<p>Showing the record strengths and growth-rates, a number of recent hurricanes have highlighted needs for improving forecasts of tropical cyclone intensities most sensitive to models of the air-sea coupling. Especially challenging is the nature and effect of the very small-scale phenomena, the sea-spray and foam, supposed to strongly affecting the momentum- and heat- air-sea fluxes at strong winds. This talk will focus on our progress in understanding and describing these "micro-scale" processes, their physical properties, the spray and foam mediated air-sea fluxes and the impact on the development of marine storms.</p><p>The starting points for this study were two laboratory experiments. The first one was designed for investigation of the spray generation mechanisms at high winds. We found out 3 dominant spray generating mechanisms: stretching liquid ligaments, bursting bubbles, splashing of the falling droplets and "bag-breakup". We investigated the efficiency spray-production mechanisms and developed the empirical statistics of the numbers of the spray generating events of each type. Basing on the "white-cap method" we found out the dependence of the spray-generating events on the wind fetch. The main attention was paid to the "bag-breakup" mechanism. Here we studied in detail the statistics of spray produced from one "bag-breakup" event. Basing on these developments, we estimated heat and momentum fluxes from the spray-generating events of different types and found out the dominant role of the "bag-breakup" mechanism.</p><p>To estimate the direct heat and momentum fluxes from the ocean surface to the atmosphere, we studied in the special experiment the foam impact on the short-wave part of the surface waves and the heat momentum exchange in the atmospheric boundary layer at high winds. Based on these results, we suggest a simple model for the aerodynamic and temperature roughness and the eddy viscosity in the turbulent boundary layer over a fractionally foam-covered water surface.</p><p>The synergetic effect of foam at the water surface and spray in the marine atmospheric boundary layer on ocean surface resistance at high winds is estimated so as to be able to explain the observed peculiarities of the air-sea fluxes at stormy conditions. Calculations within the nonhydrostatic axisymmetric model show, that the "microphysics" of the air-sea coupling significantly accelerate development of the ocean storm.</p><p>This work was supported by RFBR grant 19-05-00249 and RSF grant 19-17-00209.</p>


Sign in / Sign up

Export Citation Format

Share Document