Rotational Dependence of Line Halfwidth for the Fundamental Band 0 0 0 11–0 0 0 01 of CO2 Confined in Nanoporous Aerogel: New Measurements

2020 ◽  
Vol 33 (6) ◽  
pp. 567-570
Author(s):  
A. A. Solodov ◽  
T. M. Petrova ◽  
Yu. N. Ponomarev ◽  
A. M. Solodov ◽  
A. S. Shalygin
Keyword(s):  
1973 ◽  
Vol 51 (6) ◽  
pp. 696-697 ◽  
Author(s):  
P. T. T. Wong ◽  
E. Whalley

The integrated intensity of the pressure-induced fundamental band of gaseous chlorine measured by Winkel, Hunt, and Clouter is about 5 times that calculated assuming that the transition moment arises from the oscillation of quadrupole-induced dipole moments. This provides good evidence that valence-type interaction between gaseous chlorine molecules occurs.


1985 ◽  
Vol 63 (1) ◽  
pp. 99-103
Author(s):  
John Courtenay Lewis

The intercollisional interference dip in the Q-branch of the fundamental band of collision-induced spectra of H2–He mixtures partially fills in at low temperatures. In contradiction to claims that this ia a quantum effect, we show 1. that if the induced dipole moment is exactly proportional to the intermolecular force then the interference dip goes to zero at all temperatures; 2. that the filling-in of the dip is essentially a classical phenomenon and is due mainly to the discontinuity in the distance of closest approach during binary collisions as a function of impact parameter.


1979 ◽  
Vol 86 ◽  
pp. 378-383 ◽  
Author(s):  
L. Soonckindt ◽  
D. Etienne ◽  
J.P. Marchand ◽  
L. Lassabatere

Nature ◽  
1982 ◽  
Vol 296 (5855) ◽  
pp. 372-372 ◽  
Author(s):  
T. AMANO ◽  
P. F. BERNATH ◽  
C. YAMADA

1984 ◽  
Vol 81 (1) ◽  
pp. 578-579 ◽  
Author(s):  
S. C. Foster ◽  
A. R. W. McKellar ◽  
Trevor J. Sears
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Min-Ye Zhang ◽  
Hong Jiang

The pyrite and marcasite polymorphs of FeS2 have attracted considerable interests for their potential applications in optoelectronic devices because of their appropriate electronic and optical properties. Controversies regarding their fundamental band gaps remain in both experimental and theoretical materials research of FeS2. In this work, we present a systematic theoretical investigation into the electronic band structures of the two polymorphs by using many-body perturbation theory with the GW approximation implemented in the full-potential linearized augmented plane waves (FP-LAPW) framework. By comparing the quasi-particle (QP) band structures computed with the conventional LAPW basis and the one extended by high-energy local orbitals (HLOs), denoted as LAPW + HLOs, we find that one-shot or partially self-consistent GW (G0W0 and GW0, respectively) on top of the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation with a converged LAPW + HLOs basis is able to remedy the artifact reported in the previous GW calculations, and leads to overall good agreement with experiment for the fundamental band gaps of the two polymorphs. Density of states calculated from G0W0@PBE with the converged LAPW + HLOs basis agrees well with the energy distribution curves from photo-electron spectroscopy for pyrite. We have also investigated the performances of several hybrid functionals, which were previously shown to be able to predict band gaps of many insulating systems with accuracy close or comparable to GW. It is shown that the hybrid functionals considered in general fail badly to describe the band structures of FeS2 polymorphs. This work indicates that accurate prediction of electronic band structure of FeS2 poses a stringent test on state-of-the-art first-principles approaches, and the G0W0 method based on semi-local approximation performs well for this difficult system if it is practiced with well-converged numerical accuracy.


Sign in / Sign up

Export Citation Format

Share Document