impact parameter
Recently Published Documents


TOTAL DOCUMENTS

830
(FIVE YEARS 75)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Vol 258 ◽  
pp. 05001
Author(s):  
Guy D. Moore ◽  
Sören Schlichting ◽  
Niels Schlusser ◽  
Ismail Soudi

The interaction of a jet with the medium created in heavy-ion collisions is not yet fully understood from a QCD perspective. This is mainly due to the non-perturbative nature of this interaction which affects both transverse jet momentum broadening and jet quenching. We discuss how lattice simulations of Electrostatic QCD, can be matched to full, four dimensional QCD, to determine non-perturbative contributions to the momentum broadening kernel. We determine the momentum broadening kernel in impact parameter and momentum space and finally show how these results can be used in phenomenological calculations of in-medium splitting rates.


2021 ◽  
Vol 162 (6) ◽  
pp. 265
Author(s):  
Mason G. MacDougall ◽  
Erik A. Petigura ◽  
Isabel Angelo ◽  
Jack Lubin ◽  
Natalie M. Batalha ◽  
...  

Abstract We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3 day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M b = 20 ± 2 M ⊕ along with a radius of R b = 2.7 ± 0.1 R ⊕ from photometry. We detected an additional nontransiting planetary companion with M c sini = 10 ± 2 M ⊕ on a 16.8 day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b = 0.84 ± 0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >105 orbits yielded eccentricity constraints e b = 0.16 ± 0.03 and e c < 0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3 ± 0.9 g cc−1 as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance.


2021 ◽  
Vol 13 (22) ◽  
pp. 4693
Author(s):  
Shengpeng Yang ◽  
Xiaolei Zou ◽  
Richard Anthes

Global positioning satellite system (GPS) radio waves that reach the tropical lower troposphere are strongly affected by small-scale water vapor fluctuations. We examine along-the-ray simulations of the impact parameter at every ray integration step using the high-resolution European Centre for Medium-Range Weather Forecasts ERA5 reanalysis as the input model states. We find that disturbances to the impact parameter arise when ray paths go through the top of the sub-cloud layer, where there is a pronounced reduction with increasing height in the humidity, and wet refractivity has a strong local vertical gradient, creating multipath. Additionally, the horizontal gradients of refractivity cause the impact parameter to vary along the ray. The disturbances to the impact parameter are confined to an area about 250 km horizontally and 4 km vertically from the perigee point. Beyond 250 km from the perigee, the impact parameter remains constant. The vertical gradient of refractivity is largest at the top of the sub-cloud layer, usually between 1.5 and 3.0 km, and becomes negligibly small above 4 km.


Author(s):  
Tom Kirchner

Abstract Electron removal in collisions of alpha particles with neon dimers is studied using an independent-atom-independent-electron model based on the semiclassical approximation of heavy-particle collision physics. The dimer is assumed to be frozen at its equilibrium bond length and collision events for the two ion-atom subsystems are combined in an impact parameter by impact parameter fashion for three mutually perpendicular orientations. Both frozen atomic target and dynamic response model calculations are carried out using the coupled-channel two-center basis generator method. We pay particular attention to inner-valence Ne(2s) electron removal, which is associated with interatomic Coulombic decay (ICD), resulting in low-energy electron emission and dimer fragmentation. Our calculations confirm a previous experimental result at 150 keV/amu impact energy regarding the relative strength of ICD compared to direct electron emission. They further indicate that ICD is the dominant Ne+ + Ne+ fragmentation process below 10 keV/amu, suggesting that a strong low-energy electron yield will be observed in the ion-dimer system in a regime in which the creation of continuum electrons is a rare event in the ion-atom problem.


Author(s):  
Marco Maceda ◽  
Alfredo Macias ◽  
Daniel Martinez-Carbajal

We consider the orbits of test particles moving in the gravitational field of a noncommutative-inspired Einstein–Euler–Heisenberg black hole. Using the geometric metric, we determine the circular orbits followed by massless particles, comparing them with the circular photon orbits coming from the Plebanski pseudo-metric that takes into account the nonlinear nature of the Euler–Heisenberg electrodynamics. Using the impact parameter of the photon orbits, we define the shadow of the noncommutative-inspired black hole and discuss the constraints on the model by comparing its shadow with the prediction from General Relativity.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
J. D. Frankland ◽  
D. Gruyer ◽  
E. Bonnet ◽  
B. Borderie ◽  
R. Bougault ◽  
...  

Author(s):  
G Cracchiolo ◽  
G Micela ◽  
G Morello ◽  
G Peres

Abstract This paper is part of an effort to correct the transmission spectra of a transiting planet orbiting an active star. In Paper I (Cracchiolo et al. 2020) we have demonstrated a methodology to minimize the potential bias induced by unocculted star spots on the transmission spectrum, assuming a spot model parameterized by filling factor and temperature. In this work we introduce the limb darkening effect, therefore the position of the spot in the stellar disk and the impact parameter of the transiting planet now play a key role. The method is tested on simulations of planetary transits of three representative kinds of planetary systems, at ARIEL resolution. We find that a realistic treatment of the limb darkening is required to reliably estimate both the spots parameters and the transmission spectrum of the transiting planet. Furthermore, we show that the influence of the spots on the retrieval of the planetary transmission spectrum is significant for spots close to the center of the star, covering a fraction greater than 0.05 and with a temperature contrast greater than 500 K, and that for these cases our method can confidently extract the transmission spectrum and the impact parameter of the transiting planet for both cases of occulted and not occulted spots, provided that we have an accurate characterization of the stellar parameters and a reliable simulator of the instrument performances.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Fupeng Li ◽  
Yongjia Wang ◽  
Zepeng Gao ◽  
Pengcheng Li ◽  
Hongliang Lü ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document