Influence of the adsorption of residual gas phase molecules in a measuring chamber on the surface tension of liquid metals

Author(s):  
Kh. Kh. Kalazhokov ◽  
Z. Kh. Khalazhokov ◽  
Zaur Kh. Kalazhokov ◽  
N. S. Ponomarenko
Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

The action of water and the electron beam on organic specimens in the electron microscope results in the removal of oxidizable material (primarily hydrogen and carbon) by reactions similar to the water gas reaction .which has the form:The energy required to force the reaction to the right is supplied by the interaction of the electron beam with the specimen.The mass of water striking the specimen is given by:where u = gH2O/cm2 sec, PH2O = partial pressure of water in Torr, & T = absolute temperature of the gas phase. If it is assumed that mass is removed from the specimen by a reaction approximated by (1) and that the specimen is uniformly thinned by the reaction, then the thinning rate in A/ min iswhere x = thickness of the specimen in A, t = time in minutes, & E = efficiency (the fraction of the water striking the specimen which reacts with it).


2003 ◽  
Vol 95 (5) ◽  
pp. 1896-1900
Author(s):  
Wenfei Yan ◽  
Stephen B. Hall

Captive bubbles are commonly used to determine how interfacial films of pulmonary surfactant respond to changes in surface area, achieved by varying hydrostatic pressure. Although assumed to be isothermal, the gas phase temperature (Tg) would increase by >100°C during compression from 1 to 3 atm if the process were adiabatic. To determine the actual change in temperature, we monitored pressure (P) and volume (V) during compressions lasting <1 s for bubbles with and without interfacial films and used P · V to evaluate Tg. P · V fell during and after the rapid compressions, consistent with reductions in n, the moles of gas phase molecules, because of increasing solubility in the subphase at higher P. As expected for a process with first-order kinetics, during 1 h after the rapid compression P · V decreased along a simple exponential curve. The temporal variation of n moles of gas was determined from P · V >10 min after the compression when the two phases should be isothermal. Back extrapolation of n then allowed calculation of Tg from P · V immediately after the compression. Our results indicate that for bubbles with or without interfacial films compressed to >3 atm within 1 s, the change in Tg is <2°C.


Author(s):  
Austin Michael Wallace ◽  
Ryan C. Fortenberry

Ices in the interstellar medium largely exist as amorphous solids composed of small molecules including ammonia, water, and carbon dioxide. Describing gas-phase molecules can be readily accomplished with current high-level...


1974 ◽  
Vol 62 (1) ◽  
pp. 163-183 ◽  
Author(s):  
M. El Sawi

The distortion of a gas bubble rising steadily in an inviscid incompressible liquid of infinite extent under the action of surface tension forces is investigated theoretically using an appropriate extension of the tensor virial theorem. A convenient parameter for distinguishing the bubble shape is the Weber numberW. The virial method leads to an expression relatingWand the axis ratio χ, of the transverse and longitudinal axes of the bubble. To first order inW, this relation agrees with the linear theory established by Moore (1959). Also, comparison of the results with his (1965) approximate theory reveals similar features and excellent agreement up to χ = 2. In particular, it confirms his prediction of the existence of a maximum Weber number. Although the present work does not consider the stability of these bubbles, it is interesting to note that the maximum value of 3.271 attained byWdiffers only by about 2.8% from the critical Weber number obtained by Hartunian & Sears (1957) for the onset of instability.An approximate method for the study of slightly distorted spheroidal gas bubbles is also formulated and the resulting boundary-value problem solved numerically. The theory is then extended to include gravity. The joint effect of surface tension as well as gravitational forces has not been included in earlier theories. The shapes of the bubbles are traced and compared with the unperturbed spheroids. Comparisons for the velocity of bubble rise are made between the present predictions and some experimental results. In particular the results are compared with recent experimental data for the motion of gas bubbles in liquid metals.


Sign in / Sign up

Export Citation Format

Share Document