residual gas
Recently Published Documents


TOTAL DOCUMENTS

927
(FIVE YEARS 120)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Shingo Kariya ◽  
Takashi Matsumae ◽  
Yuichi Kurashima ◽  
Hideki Takagi ◽  
Masanori Hayase ◽  
...  

AbstractIn this study, we developed a metal multilayer that can provide hermetic sealing after degassing the assemblies and absorbing the residual gases in the package. A package without a leak path was obtained by the direct bonding of the Au/Pt/Ti layers. After packaging, annealing at 450 °C caused thermal diffusion of the Ti underlayer atoms to the inner surface, which led to absorption of the residual gas molecules. These results indicated that a wafer coated with a Au/Pt/Ti layer can provide hermetic sealing and absorb residual gases, which can simplify vacuum packaging processes in the electronics industry.


Author(s):  
Leonard Doyle ◽  
Pooyan Khademi ◽  
Peter Hilz ◽  
Alexander Sävert ◽  
Georg Schaefer ◽  
...  

Abstract High power short pulse lasers provide a promising route to study the strong field effects of the quantum vacuum, for example by direct photon-photon scattering in the all-optical regime. Theoretical predictions based on realistic laser parameters achievable today or in the near future predict scattering of a few photons with colliding Petawatt laser pulses, requiring single photon sensitive detection schemes and very good spatio-temporal filtering and background suppression. In this article, we present experimental investigations of this photon background by employing only a single high power laser pulse tightly focused in residual gas of a vacuum chamber. The focal region was imaged onto a single-photon sensitive, time gated camera. As no detectable quantum vacuum signature was expected in our case, the setup allowed for characterization and first mitigation of background contributions. For the setup employed, scattering off surfaces of imperfect optics dominated below the residual gas pressures of 1×10-4mbar. Extrapolation of the findings to intensities relevant for photon-photon scattering studies is discussed.


2021 ◽  
pp. 103-111
Author(s):  
O. V. Fominykh ◽  
S. A. Leontiev

Existing gas production technologies limit gas recovery at the level of 85 %. Therefore, it is important to introduce technologies that make it possible to maximize the volume of production and intensify the inflow; for their selection it is important to have a reliable estimate of the residual gas reserves, since with a significant volume of the aquifer of gas fields, the volume of dissolved gas can be up to 10 % of the total reserves of the reservoir, which should be taken into account when designing the application of technologies to increase gas recovery.The main hydrocarbon dissolving in reservoir water is methane. In this regard, it is of interest to study methods that make it possible to determine the volume of hydrocarbon gases dissolved in saline water, which will make it possible to determine the total reserves of such gas. We investigated the existing methods for calculating the amount of methane dissolved in reservoir water, and gave a quantitative assessment of the volume of gas dissolved in water.


2021 ◽  
Author(s):  
Abdullah Salim Shuely ◽  
Hilal Sheibani ◽  
Hawraa Al Lawati ◽  
Patrick Ezechie ◽  
Roeland van Gilst ◽  
...  

Abstract A rich condensate gas field is located in the North of Oman, which penetrated the Amin sandstone reservoir at 4015 TVDmss. A study was conducted in the field and showed there is ¾ of GIIP trapped with paleo imbibition - over geological time - gas by the water encroachment in an approximately 80 m thick Paleo-Residual Gas zone (PRG), with very low mobility of hydrocarbons and high residual gas saturations. In order to mitigate the shortcomings of such unfavorable subsurface conditions, the study proposed Gas-Aquifer-Rate Management (i.e. co-production of gas and water) utilizing existing flank wells, as a potential field improvement option. The key business drivers for this project are to re-mobilize gas from PRG flank wells and to safeguard existing NFA by Aquifer pump off and production from high rate crestal wells. The optimum gas well deliquification method has been identified based on the highest UR considering connected GIIP and well completion size. The outcome of the study indicated that the ESP technology combined with well retubing was recommended as the optimum solution. Two wells have been selected as ESP candidates to test the new technology to produce water at deep depth (4000m) and high temperature (155°C). A special slim ESP was designed for this purpose. A successful pilot was completed in one well and gave conclusive results. The test showed that the well produced 3K m3/d of gas and 83 m3/d of liquid with 95% BSW. The second pilot is currently in the commissioning phase. The successful outcomes of the pilot succeeding in connecting the gas and restoring wells back with economic production rates will lead to expedite a full field implementation plan. This project will add a significant economic value of positive NPV at low UTC. This paper will highlight the full story of the PRG and ESP technology implementation and describe in details the entire process starting from the artificial lift selection, well candidate selection screening criteria, critical success factors, operating parameters, life-time cycle and the test results of gas and condensate and water production. Also, the learning and challenges in operating the ESP will be shared.


2021 ◽  
Vol 16 (12) ◽  
pp. P12009
Author(s):  
A. Romanov ◽  
J. Santucci ◽  
G. Stancari ◽  
A. Valishev ◽  
N. Kuklev

Abstract We present the results of experimental studies on the transverse and longitudinal dynamics of a single electron in the IOTA storage ring. IOTA is a flexible machine dedicated to beam physics experiments with electrons and protons. A method was developed to reliably inject and circulate a controlled number of electrons in the ring. A key beam diagnostic system is the set of sensitive high-resolution digital cameras for the detection of synchrotron light emitted by the electrons. With 60–130 electrons in the machine, we measured beam lifetime and derived an absolute calibration of the optical system. At exposure times of 0.5 s, the cameras were sensitive to individual electrons. Camera images were used to reconstruct the time evolution of oscillation amplitudes of a single electron in all 3 degrees of freedom. The evolution of amplitudes directly showed the interplay between synchrotron-radiation damping, quantum excitations, and scattering with the residual gas. From the distribution of measured single-electron oscillation amplitudes, we deduced transverse emittances, momentum spread, damping times, and beam energy. Estimates of residual-gas density and composition were calculated from the measured distributions of vertical scattering angles. Combining scattering and lifetime data, we also provide an estimate of the aperture of the ring. To our knowledge, this is the first time that the dynamics of a single electron are tracked in all three dimensions with digital cameras in a storage ring.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1254
Author(s):  
Haibo Liu ◽  
Zhihang Shu ◽  
Yinbin Shi ◽  
Xuebing Wang ◽  
Xucheng Xiao ◽  
...  

Gas flow in a coal seam is a complex process due to the complicated coal structure and the sorption characteristics of coal to adsorbable gas (such as carbon dioxide and methane). It is essential to understand the gas migration patterns for different fields of engineering, such as CBM exploitation, underground coal mine gas drainage, and CO2 geo-sequestration. Many factors influence gas migration patterns. From the surface production wells, the in-seam patterns of gas content cannot be quantified, and it is difficult to predict the total gas production time. In order to understand the gas flow patterns during gas recovery and the gas content variations with respect to production time, a solid-fluid coupled gas migration model is proposed to illustrate the gas flow in a coal seam. Field data was collected and simulation parameters were obtained. Based on this model, different scenarios with different borehole sizes were simulated for both directional boreholes and normal parallel boreholes in coal seams. Specifically, the borehole sizes for the directional boreholes were 10 m, 15 m, and 20 m. The borehole sizes for the normal parallel boreholes were 2 m, 4 m, and 6 m. Under different gas drainage leading times, the total gas recovery and residual gas contents were quantified. In Longwall Panel 909 of the Wuhushan coal mine, one gas drainage borehole and five 4 m monitoring boreholes were drilled. After six months of monitoring, the residual gas content was obtained and compared with the simulation results. Of the total gas, 61.36% was drained out from the first 4 m borehole. In this field study, the effective drainage diameter of the drainage borehole was less than 8 m after six months of drainage. The gas drainage performance was tightly affected by the borehole size and the gas drainage time. It was determined that the field observations were in line with the simulation results. The findings of this study can provide field data for similar conditions.


Sign in / Sign up

Export Citation Format

Share Document