On the determination of the internal pressure in a cylinder based on acoustic testing data

2014 ◽  
Vol 50 (10) ◽  
pp. 595-601 ◽  
Author(s):  
A. O. Vatul’yan ◽  
V. V. Dudarev
1974 ◽  
Vol 96 (3) ◽  
pp. 722-728
Author(s):  
Rudolph E. Croteau ◽  
Herman E. Sheets

Underwater plate vibration and its associated noise are of interest for the analysis of ship structures, propeller blades, and other areas of underwater acoustics. In order to analyze the relationship between a plate vibrating underwater and the acoustic pressure in the near-field, optical interferometric holography, using a blue-green laser beam, was used to determine surface displacement for the vibrating plate, which was excited through a fluid-coupled system. Acoustic measurements of the same source were made in a water tower concurrently with the holography and later at a precision acoustic testing facility. This method permits prediction of underwater plate modal frequencies and shapes with high accuracy.


1959 ◽  
Vol 81 (2) ◽  
pp. 190-194 ◽  
Author(s):  
D. R. Miller

The combination of cyclic thermal stresses and sustained internal pressure in a vessel is shown to be a source of progressive expansion of the vessel if the stresses are sufficiently high. Criteria presented allow determination of limits to be imposed on stresses in order to prevent progressive expansion or to allow estimation of the expansion per cycle where stresses are sufficient to produce growth. The effect of strain-hardening of the metal on progressive reduction of the growth rate is discussed.


Sign in / Sign up

Export Citation Format

Share Document