protective clothing
Recently Published Documents


TOTAL DOCUMENTS

2210
(FIVE YEARS 340)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuqi Tang ◽  
Zhantong Mao ◽  
Anni Li ◽  
Lina Zhai

PurposeThe purpose of this paper is to study the heat transfer effect of copper sensor and skin simulant on skin.Design/methodology/approachFor the sensor, the physical and mathematical models of the thermal sensors were used to obtain the definite conditions in the heat transfer process of the sensor, and the heat transfer models of the two sensors were developed and solved respectively by using ANSYS WORKBENCH 19.0 software. The simulation results were compared with the experimental test results. For the skin, the numerical model of the skin model was developed and calculated. Finally, the heat transfer simulation performance of the two sensors was analyzed.FindingsIt is concluded that the copper sensor is more stable than the skin simulant, but the material and structure of the skin simulant is more suitable for skin simulation. The skin simulant better simulates the skin heat transfer. For all the factors in the model, the thermal properties of the material and the heat flux level are the key factors. The convective heat transfer coefficient, radiation heat transfer rate and the initial temperature have little influence on the results, which can be ignored.Research limitations/implicationsThe results show that there are still some differences between the experimental and numerical simulation values of the skin simulant. In the future, the thermal parameters of skin simulant and the influence of the thermocouple adhesion should be further examined during the calibration process.Practical implicationsThe results suggest that the skin simulant needs to be further calibrated, especially for the thermal properties. The copper sensor on the flame manikin can be replaced by the skin simulant with higher accuracy, which will be helpful to improve the accuracy of performance evaluation of thermal protective clothing.Social implicationsThe application of computational fluid dynamics (CFD) technology can help to analyze the heat transfer simulation mechanism of thermal sensor, explore the influence of thermal performance of thermal sensor on skin simulation, provide basis for the development of thermal sensor and improve the application system of thermal sensor. Based on the current research status, this paper studies the internal heat transfer of the sensor through the numerical modeling of the copper sensor and skin simulant, so as to analyze the effect of the sensor simulating skin and the reasons for the difference.Originality/valueIn this paper, the sensor itself is numerically modeled and the heat transfer inside the sensor is studied.


2022 ◽  
pp. 52101
Author(s):  
Manorama Tripathi ◽  
Surekha Parthasarathy ◽  
Raju Yadav ◽  
Prasun Kumar Roy

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 588-594
Author(s):  
Oratai Jongprateep ◽  
Chitlada Mani-lata ◽  
Yosita Sakunrak ◽  
Krittanant Audcharuk ◽  
Tithametha Narapong ◽  
...  

The fabrics coated with TiO2 photocatalyst and fluoropolymer exhibit good water-repellent and antimicrobial properties. The coated fabrics can be used in the fabrication of smart gowns and scrub suits as protective clothing for medical staff.


2021 ◽  
pp. 152808372110575
Author(s):  
Gayathri Natarajan ◽  
Palani Rajan T

Motorcycle protective clothing is designed to protect motorcyclists from injuries during accidents. It helps to protect the motorcyclist and pillion passengers during the collision and acts as a barrier between the rider’s skin and tarmac surface. Soft tissue trauma is common in motorcycle accidents and protective clothing can protect the soft tissue of the riders up to a certain extent during accidents. Though there are many reasons for road accidents and injuries, the reasons such as uncomfortable clothing, thermally inefficient protective clothing during hot climatic conditions, and ineffective performance of the personal protective equipment (PPE) are also to be considered seriously. Motorcycle clothing is specially designed in such a way that it could give better protection against impact and abrasion during the collision. An increase in the usage of the motorcycle has also in turn increased the crash statistics. This paper deals with the significance of motorcycle clothing, materials, test standards, and their performance characteristics. As per the review results, most of the motorcycle protective clothing has failed to meet out the quality standard protocols. Impact resistance, abrasion resistance, thermal comfort, and ergonomics are the major areas where more focus is required. Design of appropriate fabrics assuring requisites of motorcycle clothing is very challenging and extensive research is still intended in these areas.


2021 ◽  
Vol 54 (4) ◽  
pp. 10-15
Author(s):  
Alexander N. Petukhov ◽  
Alexander F. Davydov

Elevated temperatures are factors causing harm to human health and life. To ensure protection, various personal protective equipment is used, which includes special protective clothing. The article discusses the heat-shielding indicators of the safety of textile material. In order to determine the heat-shielding properties of the material, various types of exposure are used – convective heat from a heating element and an open flame. Fabrics of various raw materials and surface density are used for sewing special protective clothing. Five clothes were selected for the research. The research was held under the exposure of an open flame and convective heat of heating element with a comparable heat flux density equal to 80 kW/m². Also, research was held under influence of multiple wash cycles on radiant heat transfer index and heat transfer index.


2021 ◽  
Vol 1 (80) ◽  
pp. 45-67
Author(s):  
Marzena Rachwał ◽  
Małgorzata Majder-Łopatka ◽  
Tomasz Węsierski ◽  
Artur Ankowski ◽  
Magdalena Młynarczyk ◽  
...  

Every day, firefighters put their health and life at risk by saving people and their property not only during fires, but by being always ready during all kinds of unfortunate events. Therefore, they need special personal protective equipment, including protective clothing. The purpose of the study was to compare thermal properties of new (PROTON and SYRIUSZ) and old (US-03) personal protective clothing for firefighters. Measurements of thermal insulation (total, effective and local) were carried out using a full body shape thermal manikin Newton consisting of 34 segments, in which temperature and heat flux were controlled independently. Results of the total thermal insulation of the entire clothing reveal differences between all three models. The lowest values were noticed for the model PROTON with light and shorter jacket and the highest values of thermal insulation for the new model SYRIUSZ, indicating that this model protect the user against heat most effectively. New models of personal protective clothing for firefighters should be recommended for use in everyday work, because they are characterized by better parameters than the previous type of protective clothing, both in terms of thermal protection and mobility.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7849
Author(s):  
Anna Rabajczyk ◽  
Maria Zielecka ◽  
Tomasz Popielarczyk ◽  
Tomasz Sowa

Nanotechnology is used, to an increasing extent, in practically every aspect of the economy and society. One area where nanotechnology is constantly advancing is fire protection. Nanostructures are found in elements used in direct protection, such as in protective clothing, filters, and helmets. Solutions in the field of nanotechnology are also used in elements reducing the fire risk and increasing the fire safety, such as building materials and structures, paints, coatings, or fire safety equipment (e.g., fire detectors). However, new solutions may also pose a threat to the safety of people and the environment. As a result of operation or combustion and degradation processes, the emission of nano-substances with toxic properties may occur. Therefore, knowledge in this field is necessary, as it allows for the appropriate targeting and use of nanotechnology.


Sign in / Sign up

Export Citation Format

Share Document