The Enhancement of Mine Waste Stability Using Biocementation

2021 ◽  
Vol 57 (4) ◽  
pp. 557-568
Author(s):  
Sheyda Parvizi ◽  
Ramin Doostmohammadi ◽  
Foruzan Ghasemian Roodsari
Keyword(s):  
2017 ◽  
Vol 16 (9) ◽  
pp. 2089-2096
Author(s):  
Artwell Kanda ◽  
George Nyamadzawo ◽  
Jephita Gotosa ◽  
Nathan Nyamutora ◽  
Willis Gwenzi

Data Series ◽  
10.3133/ds378 ◽  
2008 ◽  
Author(s):  
Denise M. Argue ◽  
Richard G. Kiah ◽  
Nadine M. Piatak ◽  
Robert R. Seal ◽  
Jane M. Hammarstrom ◽  
...  

2003 ◽  
Author(s):  
Kathleen S. Smith ◽  
Thomas R. Wildeman ◽  
LaDonna M. Choate ◽  
Sharon F. Diehl ◽  
David L. Fey ◽  
...  

2018 ◽  
Vol 69 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Cristina Dinu ◽  
Eleonora Mihaela Ungureanu ◽  
Gabriela Geanina Vasile ◽  
Lidia Kim ◽  
Ioana Ionescu ◽  
...  

The soils situated near the abandoned mines are highly polluted with metals due to the discharge and dispersion of mine waste into nearby air, water (surface and groundwater) and soil. Heavy metals may be transferred to humans through ingestion, inhalation or dermal absorption and can produce serious health problems affect the nervous, endocrine and immune systems, hematopoietic function and cellular metabolism. This paper investigates the presence of metallic elements from fourteen soil samples (seven sampling points) and thirty-six vegetation samples (different types of leaves, plants, roots and tree barks). The samples were collected from six different sites located in an abandoned mining area and from a point (blank sample) located 5 km in the SV direction of the quarry. The results obtained for soil samples show an overrun of the alert and / or intervention threshold for the following metals: arsenic, cadmium, cobalt, copper, manganese, nickel, lead and zinc. The analytical investigation for vegetation samples indicated that concentration for calcium, magnesium, cadmium, chromium, manganese, nickel, lead, zinc were situated over the normal range in some samples. The analytical investigations were performed by optical emission spectrometry (ICP-OES). The study�s conclusion indicates that, as result of soil acidic pH and high mobility of some metals, metallic elements migrate from soil to vegetation.


2003 ◽  
Vol 38 (3) ◽  
pp. 483-497 ◽  
Author(s):  
Susan A. Baldwin ◽  
Al Henry Hodaly

Abstract Sediment from a wetland receiving runoff from a coal mine waste dump in the Elk River Valley of southeast British Columbia was assessed for potential selenium uptake. Selenite [SeO32-, Se(IV)] was found to adsorb to the washed sediment at pH 7 to 8, whereas no selenate [SeO42-, Se(VI)] was adsorbed, in the concentration range of 8 to 225 μg L-1 Se as selenite or selenate. Sulfate- and selenate-reducing bacterial activity was detected in the sediment. In the presence of sulfate-reducing bacteria growth medium, Se as selenate was reduced from 619(±53) μg L-1 to 15(±0.7) μg L-1, and in the presence of selenate-reducing bacteria growth medium, Se as selenate was reduced from 364(±66) mg L-1 to 22(±10) mg L-1. Semi-continuous microcosms containing sediment overlaid with selenate (500 μg L-1 Se) and sulfate (0.9 g L-1) containing water were amended with plant debris from the site or nutrients (lactate and fertilizer). Potential selenate reduction rate (0.76 h-1) was highest in the unamended microcosms. Amendment with plant debris from the site had a negative effect on selenate reduction rate in the short term (after one hour) and a positive effect on Se removal in the long term (after one week). This study suggests that wetland sediments at the mine site may be important sinks for Se.


2019 ◽  
Author(s):  
Claudia Dawson ◽  
◽  
Samara Ord ◽  
Daniel M. Sturmer ◽  
J. Caleb Chappell ◽  
...  

2020 ◽  
Author(s):  
Sheyla B. Palomino Ore ◽  
◽  
Pablo Quesada Oloriz ◽  
Oscar Tafur Lopez ◽  
Junior Marca Salcedo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document