Circulation system of a pneumatic drill with central drilling mud removal

2013 ◽  
Vol 49 (2) ◽  
pp. 248-253
Author(s):  
A. A. Lipin ◽  
Yu. P. Kharlamov ◽  
V. V. Timonin
2020 ◽  
pp. 26-29
Author(s):  
T.Sh. Salavatov ◽  
◽  
Y.I. Safarov ◽  
S.A. Musayeva ◽  
◽  
...  

The paper makes an effort to specify the relaxation time of subsurface rocks composing the borehole wall during geothermal well drilling justifying theoretical and practical researches. To solve mentioned issues, a theory of dumping of pressure fluctuations in non-stationary motion of drilling mud in the circulation system of well, based on the data of change of pressure and time consumption is applied and as a result a calculation formula obtained. The method has been tested in the well No 245 in Muradkhanly area.


2019 ◽  
Vol 2 (2) ◽  

Due to significant variations of the subsurface geology from the surface to the top of reservoir and requirement of different fluid characteristics for drilling various hole there is a need to use various mud systems. These may include a simple spud mud for surface hole section, an inhibitive drilling fluid for reactive shale section, a salt water-based mud for salt diapirs and salt formations, and a highly lubricating mud for deviated hole sections with high dogleg severity.To optimize each of these separate and distinct scenarios, there is a need to change the mud system while drilling to overcome the technical challenges associated with these formations and wellbore profiles. The change over from one mud system to another is typically done between casing points while constructing the well to overcome specific drilling challenges associated with next whole section.There is significant time and effort required to clean the mud circulation system adequately before a mud change over in order to avoid any contamination of the new mud system.This is especially true when displacing a waterbased mud by an oil-based mud or an oil-based mud by a water-based mud.If this is not done properly, contamination of the new mud by the old mud could be a source of major problems due to partial or complete loss of functional ability of the new mud system. An adaptable drilling mud system that can easily be transformed from a spud mud system to an inhibitive, or a high lubricating or a salt water mud can provide the industry a versatile fluid system with multiple hole section applications.This removes much of the NPT associated with mud changeover, reduces the mud cost as compared to mixing a totally new mud system and eliminates concerns regarding mud contamination as well as any disposal or recycling cost for the replaced system. This paper describes a volcanic ash-based drilling mud that can be used as a spud mud to drill the surface hole, can easily be converted to an inhibitive mud system to drill reactive shale sections of a borehole, a salt water-based mud to drill the salt sections and also a high lubricating water-based drilling mud to reduce torque and drag problems in deviated and horizontal boreholes. The flexible and easily convertible nature of the base volcanic ash-based drilling mud has potential to reduce total drilling cost significantly as it eliminates a significant portion of non-productive drilling time associated with mud changeover, cleaning of mud circulation system, new mud preparation, incorporation of new mud in the circulation system and displacement of the old mud from the borehole by the new mud, etc.


Author(s):  
Yu. P. Morozov

Based on the solution of the problem of non-stationary heat transfer during fluid motion in underground permeable layers, dependence was obtained to determine the operating time of the geothermal circulation system in the regime of constant and falling temperatures. It has been established that for a thickness of the layer H <4 m, the influence of heat influxes at = 0.99 and = 0.5 is practically the same, but for a thickness of the layer H> 5 m, the influence of heat inflows depends significantly on temperature. At a thickness of the permeable formation H> 20 m, the heat transfer at = 0.99 has virtually no effect on the thermal processes in the permeable formation, but at = 0.5 the heat influx, depending on the speed of movement, can be from 50 to 90%. Only at H> 50 m, the effect of heat influx significantly decreases and amounts, depending on the filtration rate, from 50 to 10%. The thermal effect of the rock mass with its thickness of more than 10 m, the distance between the discharge circuit and operation, as well as the speed of the coolant have almost no effect on the determination of the operating time of the GCS in constant temperature mode. During operation of the GCS at a dimensionless coolant temperature = 0.5, the velocity of the coolant is significant. With an increase in the speed of the coolant in two times, the error changes by 1.5 times.


2006 ◽  
Vol 18 (4) ◽  
pp. 305-333 ◽  
Author(s):  
Mio Hirayama ◽  
Hisashi Umekawa ◽  
Mamoru Ozawa

Author(s):  
A.V. Nekhorosheva ◽  
◽  
V.P. Nekhoroshev ◽  
I.V. Lodina ◽  
◽  
...  

Author(s):  
R.R. Sagitov ◽  
◽  
K.M. Minaev ◽  
A.S. Zakharov ◽  
A.S. Korolev ◽  
...  

2019 ◽  
Vol 12 ◽  
pp. 107-111
Author(s):  
A.N. Ivanov ◽  
◽  
O.V. Kryukov ◽  
Vu Van Hung ◽  
Mai Duy Khanh ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document