Active neutron sensing of the Martian surface with the DAN experiment onboard the NASA “Curiosity” Mars rover: Two types of soil with different water content in the gale crater

2016 ◽  
Vol 42 (4) ◽  
pp. 251-259 ◽  
Author(s):  
I. G. Mitrofanov ◽  
A. S. Kozyrev ◽  
D. I. Lisov ◽  
A. A. Vostrukhin ◽  
D. V. Golovin ◽  
...  
Author(s):  
Yiran Wang ◽  
Bo Wu

Images from two sensors, the High-Resolution Imaging Science Experiment (HiRISE) and the Context Camera (CTX), both on-board the Mars Reconnaissance Orbiter (MRO), were used to generate high-quality DEMs (Digital Elevation Models) of the Martian surface. However, there were discrepancies between the DEMs generated from the images acquired by these two sensors due to various reasons, such as variations in boresight alignment between the two sensors during the flight in the complex environment. This paper presents a systematic investigation of the discrepancies between the DEMs generated from the HiRISE and CTX images. A combined adjustment algorithm is presented for the co-registration of HiRISE and CTX DEMs. Experimental analysis was carried out using the HiRISE and CTX images collected at the Mars Rover landing site and several other typical regions. The results indicated that there were systematic offsets between the HiRISE and CTX DEMs in the longitude and latitude directions. However, the offset in the altitude was less obvious. After combined adjustment, the offsets were eliminated and the HiRISE and CTX DEMs were co-registered to each other. The presented research is of significance for the synergistic use of HiRISE and CTX images for precision Mars topographic mapping.


2019 ◽  
Author(s):  
Pavan Kumar ◽  
Jiwan Singh Rawat ◽  
Sufia Rehman ◽  
Haroon Sajjad ◽  
Meenu Rani ◽  
...  

Abstract. Exploration of Martian surface and the crater deposition has recently attracted scientific community. We hypothesized the existence of momentous topographic features of different origin on the Martian surface. It was observed that Gale Crater has a thick sediment deposition mainly of fluvial and aeolian origin. This study has utilized spatially referenced topographic dataset Context Camera images acquired from Mars reconnaissance orbiter for exploring the geomorphic processes and topography of Gale Crater. A base map was prepared by mosaicking all imagesfor preparing geomorphologic map of the crater. Surface map of the topography of the Crater was prepared using Mars Orbiter Laser Altimeter (MOLA) data. HiRISE images were used to examine the identified geomorphic features. Results revealed that the presence of both fluvial and aeolian processes and their respective associated landforms in the Crater. Depositional landforms such as alluvial fan, inverted channel and mound and erosional landform namely canyons were distinctly identified on the image. Yardangs produced by erosional and ripple and dunes formed by the depositional work of wind were also identified in the Crater. The fluvial channel, inverted channels and fan shaped deposits further signifies ongoing aqueous activity on the Gale Crater. Sinuous ridges are the common features present on the floor of Crater. Rock particles, sand and silt in the crater were found to have been transported and deposited by flowing water on its floor. Presence of different sedimentary structures and valley revealed ancient sedimentary deposition due to water action. Significant ejecta morphologies were also identified on Martian surface. Our study confirms the previous studies that presence of H2O sub surface volatiles. Concentrations of volatiles have produced double layer ejecta morphology. The concept and findings of this study will escalate knowledge about the surface features on Gale Crater. However, more coherent investigation is needed for modelling and understanding the processes and landforms of the crater. Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images have proved useful for geomorphic and topographic mapping of the Mars planet. The dataset used in this study can be accessed on Mars Orbital Data Explorer (https://ode.rsl.wustl.edu/mars/indexproductsearch.aspx).


2021 ◽  
Author(s):  
Sergei Nikiforov ◽  
Maya Djachkova ◽  
Igor Mitrofanov ◽  
Maxim Litvak ◽  
Denis Lisov ◽  
...  

<p>This work presents the latest results on the estimations of Water Equivalent Hydrogen (WEH) gathered in martian areas Vera Rubin ridge (VRR) and Glen Torridon (GT) by the Dynamic Albedo of Neutron (DAN) instrument installed onboard NASA’s Curiosity rover. The main science objective of DAN is to study bound water content in shallow layer of martian subsurface down to 0.6 m [1].</p><p>Extensive scientific campaign on Vera Rubin ridge was started in the middle of 2017 and lasted until the beginning of 2019 when the rover reached another region – Glen Torridon. VRR is mostly related to hematite minerals that might be formed in the presence of liquid water. On the other hand, GT region is thought to be associated with clay minerals, according to CRISM observations [2].</p><p>We will present the latest results on DAN passive observations in these Mars areas. Data are referred to the period of more than 3 years of observations or MSL traverse segment from 17 km to 23 km. The main result is the notable increase of WEH in GT in comparison with VRR, as well as in comparison with the whole Curiosity traverse. Possibly, the increase may indicate on the qualitative difference in neutron-absorption elements that are forming the soil of the GT region.</p><p>References:</p><p>[1] <em>Mitrofanov, I. G., et al., (2014). Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument. J. Geophys. Res., 119(7), 1579–1596. doi:10.1002/2013JE004553.</em></p><p>[2] <em>Murchie, S. L., et al. (2009), Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase, J. Geophys. Res., 114, E00D07, doi:10.1029/2009JE003344.</em></p>


Author(s):  
Muhammad Musaddique Ali Rafique

Development of rovers and development of infrastructure which enables them to probe other planets (such as Mars) have sparked a lot of interest recently specially with increasing public attention in Moon and Mars program by National Aeronautics and Space Administration. This is designed to be achieved by various means such as advanced spectroscopy and artificial intelligent techniques such as deep learning and transfer learning to enable the rover to not only map the surface of planet but to get a detailed information about its chemical makeup in layers beneath (deep learning) and in areas around point of observation (transfer learning). In this work, which is part of a proposal, later approach is explored. A systematic strategy is presented which make use of aforementioned techniques developed for metallic glass matrix composites as benchmark and helps develop algorithms for chemistry mapping of actual Martian surface on Perseverance Rover launching shortly.


2020 ◽  
Author(s):  
Taichi Kawamura ◽  
Ludovic Margerin ◽  
Mélanie Drilleau ◽  
Sabrina Ménina ◽  
Philippe Lognonné ◽  
...  

<p> NASA InSight (the Interior Exploration using Geodesy and Heat Transport) has placed the first broadband seismometer (SEIS) on the Martian surface and now continuously monitoring Martian seismic activity. Since the first detection of a marsquake in March 2019, SEIS detected more than 200 marsquakes and Mars has been revealed to be a seismically active planet. The dataset can now be used to perform the seismic investigation of the Mars interior and interpret this in a comparative manner by referring to the examples from the Earth and the Moon.</p><p>In this study, we investigate the seismic attenuation on Mars and compare this with the Earth and the Moon. Attenuation can be described as a combination of inelastic absorption and elastic diffusion of energy. Such properties will give important constraints on the composition of the Mars interior and also its thermal state. Another interesting aspect will be to discuss the water content with respect to the attenuation. Given the large variety of water content for the Earth, the Moon and Mars, the attenuation feature will be likely to differ significantly between these planets and satellite. Here we use the seismic dataset obtained by InSight SEIS and construct a 1D structure of seismic attenuation on Mars. Then we refer to the values obtained for the Earth and the Moon to discuss the possible implication on their differences and similarities.</p><p> The presentation aims to summarize the results from different approaches taken by the authors. The approach includes; 1) spectral analyses of seismic signals and spectral decay fitting, 2) seismic coda analyses with coda rise time and decay, 3) numerical coda simulation with diffusion theory on seismic energy. With these approaches we will be constraining seismic quality factor Q and diffusivity D for different depth range. Different approaches have sensitivities to different depth and prarameters and we aim to provide our view on the martian attenuation and diffusion to date by summarizing the obtained results.</p>


2018 ◽  
Author(s):  
Elizabeth B. Rampe ◽  
◽  
Mathieu G.A. Lapotre ◽  
Thomas F. Bristow ◽  
Raymond Arvidson ◽  
...  

Science ◽  
2018 ◽  
Vol 360 (6393) ◽  
pp. 1093-1096 ◽  
Author(s):  
Christopher R. Webster ◽  
Paul R. Mahaffy ◽  
Sushil K. Atreya ◽  
John E. Moores ◽  
Gregory J. Flesch ◽  
...  

Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.


Author(s):  
J. Yang ◽  
Z. Kang

<p><strong>Abstract.</strong> Rocks are one of the major Martian surface features and yield significant information about the relevant geology process and the life exploration. However, autonomous Martian rock detection is still a challenging task due to the appearance similar to the background, the view and illumination change. Therefore, this paper presents a gradient-region constrained level set method based on mars rover image for automatic Martian rock extraction. In our method, the evolution function of level set consists of the internal energy term for guaranteeing the deviation of the level set function from a signed distance function and the external energy term, where the gradient-based information is integrated with the locally adaptive region-based information, for robustly driving the motion of the zero-level set toward the object boundaries even in images with ununiform grey scale. The resulting evolution of the level set function is based on the minimisation of the overall energy functional using the standard gradient descent method. As a result, those detected Martian surface regions that are most likely to yield valuable scientific discoveries will be further analysed based on two-dimensional shape characterisation. To evaluate the performance of the proposed method, experiments were performed on mars rover image under various terrain and illumination conditions. Results demonstrate that the proposed method is robust and efficient for automatically detecting both small-scale and large-scale rocks on Martian surfaces.</p>


2020 ◽  
Author(s):  
Maya Djachkova ◽  
Igor Mitrofanov ◽  
Maxim Litvak ◽  
Denis Lisov ◽  
Sergei Nikiforov ◽  
...  

&lt;p&gt;The Dynamic Albedo of Neutrons (DAN) instrument designed to detect neutrons in order to determine hydrogen abundance in the Martian subsurface (down to 1 m deep) is successfully working onboard Mars Science Laboratory (MSL) Curiosity rover for more than seven years. The Curiosity rover covered more than 20 km on the Martian surface and crossed a range of terrain types and geological structures of different mineralogical composition.&lt;/p&gt;&lt;p&gt;We investigate the possible correlation between the water equivalent hydrogen (WEH) value, as measured by DAN along the Curiosity traverse, and the presence of hydrated minerals, as observed from the orbit by Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter. &amp;#160;&lt;/p&gt;&lt;p&gt;Our analysis of the WEH value from DAN measurements in Gale crater and the CRISM data, reflecting the distribution of hydrated/hydroxylated minerals on the surface of this crater, shows a confident increase of the average WEH values for the surface elements, containing certain types of minerals, in comparison with surface elements, that do not contain any of them. This increase is shown to become higher for surface with more prominent spectral features of hydrated/ hydroxylated minerals on the surface. Thus, certain types of minerals being parts of the sedimentary deposits composing Gale crater, should have considerable thickness, which is sufficient for active neutron sensing in DAN measurements. To explain the correspondence, one may assume that large blocks of certain mineral composition are distributed over the traverse, the tops of which are observed by CRISM from the Martian orbit, and the volumes of which are detectable by DAN on the Martian surface.&lt;/p&gt;&lt;p&gt;The bottom of the crater is thought to be a composition of a uniform regolith and sedimentary blocks of minerals with different level of hydration. The fraction of the regolith contains a standard value of WEH, about 2.6 wt.%, and the &amp;#160;fraction of minerals, provided they are there, might contribute to some increase of the mean WEH values, up to 3.8 wt.%, as they are obtained at some spots from the DAN neutron sensing.&lt;/p&gt;


2013 ◽  
Vol 7 (6) ◽  
pp. 1839-1855 ◽  
Author(s):  
A. Lorek ◽  
N. Wagner

Abstract. Water substantially affects nearly all physical, chemical and biological processes on the Earth. Recent Mars observations as well as laboratory investigations suggest that water is a key factor of current physical and chemical processes on the Martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid-like state of water on Martian analogue soils for temperatures below 0 °C. To this end, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine-grained soils in the frequency range from 10 Hz to 1.1 MHz at Martian-like temperatures down to −70 °C. Two Martian analogue soils have been investigated: a Ca-bentonite (specific surface of 237 m2 g−1, up to 9.4% w / w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g−1, up to 7.4% w / w). Three soil-specific relaxation processes are observed in the investigated frequency–temperature range: two weak high-frequency processes (bound or hydrated water as well as ice) and a strong low-frequency process due to counter-ion relaxation and the Maxwell–Wagner effect. To characterize the dielectric relaxation behaviour, a generalized fractional dielectric relaxation model was applied assuming three active relaxation processes with relaxation time of the ith process modelled with an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid-like water content by means of the Birchak or CRIM equation. There are evidence that bentonite down to −70 °C has a liquid-like water content of 1.17 monolayers and JSC Mars 1 a liquid-like water content of 1.96 monolayers.


Sign in / Sign up

Export Citation Format

Share Document