orbital data
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 27)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Yury V. LISAKOV ◽  
Olga V. LAPSHINOVA ◽  
Nikolay M. PUSHKIN ◽  
Viktor P. KONOSHENKO ◽  
Nikolay V. MATVEEV ◽  
...  

The paper presents the results of analysis of electrical measurements performed in the space experiment "Impulse (stage 1)" on the Service module of the ISS RS. This experiment investigated the effects of the interaction of the charged component of the ionosphere to the surface of large KA, which is the ISS. This paper analyses the measurement of quasi-stationary electric field and current leakage, was, respectively, sensors of the vibration type and flat probes from the Complex control electrophysical parameters (CCEP), developed by SPJ MT. To study the dependence of measurements from the ionosphere flow direction to the surface of the ISS RS was installed two sets of sensors with the direction of the angle of "visibility" in the Nadir (towards the Earth) and to "satellite footprint " (against the velocity vector of the ISS). Carried out analysis of common regularities measurements depending on the sun-shadow environment on orbit ISS motions and depending on current geophysical dynamics of the ionosphere. Massive the measurements including more than 170 telemetric sessions were analyzed. More than 11000 hours of measurements current of leakage (or runoff current) and measurements of quasi-stationary electric field with discretization 1s and UT binding to each point were analysed. The data measurements, geophysical and orbital data were collected in an electronic album. It is shown that experimental data correlate with the crossing time of the ISS boundaries known geophysical structures: the noon Meridian, the Main ionospheric failure (MIF), the boundaries diffuse intrusion (BDI), the Equatorial Geomagnetic anomaly (EA). In this regard, despite the specificity of the ISS (the spacecraft super big sizes, the most complex spatial configuration) similar measurements, nevertheless, are quite suitable for monitoring researches of some features of an ionosphere at the level of F2 layer with a temporary scale from 1s and can be used for more detailed study of the geophysical structures and related effects in the ionosphere. In addition, the results obtained can be used for the analysis of disturbances of electromagnetic conditions near the surface of the ISS RS, for monitoring potential and currents of leakage on the surface of the ISS. Keywords: electrophysical measurements, sensors of the vibration type, flat probes, electric field, current leakage, geophysical structure, ionosphere


2021 ◽  
Vol 13 (18) ◽  
pp. 3739
Author(s):  
Jong Uk Park ◽  
Hyung-Chul Lim ◽  
Ki-Pyoung Sung ◽  
Mansoo Choi

Two-way Laser Time Transfer (TLTT) using the Ajisai satellite has been considered as a more accurate and stable time transfer technique than existing methods; TLTT requires the kHz laser pulses to decrease the systematic restrictions for TLTT realization. However, because of the low energy of the kHz laser pulses as well as the low cross section due to the small size of the Ajisai reflecting mirror, the link budget is an important issue to establish the TLTT link between two ground stations. In this study, the TLTT link budget is investigated to find the optimal laser pulse energy via analysis of geometric effects using 30 days of orbital data of the Ajisai satellite from 29 March 2021 within a ground network consisting of four stations located in three countries. The geometric configuration reduces the TLTT link budget by three orders of magnitude due to free space loss, atmospheric transmission, and effective cross section; then, the pulse energy is required to be much higher than laser ranging to the Ajisai satellite. It is shown from the simulation that a few tens of mJ level of pulse energy at the transmitting station is quite enough for TLTT realization.


Elements ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 235-240 ◽  
Author(s):  
Keith D. Putirka ◽  
Caroline Dorn ◽  
Natalie R. Hinkel ◽  
Cayman T. Unterborn

To test whether exoplanets are similar to Earth, knowledge of their host star composition is essential. Stellar elemental abundances and planetary orbital data show that of the ~5,000 known minerals, exoplanetary silicate mantles contain mostly olivine, orthopyroxene, and clinopyroxene, ± quartz and magnesiowüstite at the extremes, while wholly exotic mineralogies are unlikely. Understanding the geology of exoplanets requires a better marriage of geological insights to astronomical data. The study of exoplanets is like a mirror: it reflects our incomplete understanding of Earth and neighboring planets. New geological/planetary experiments, informed by exoplanet studies, are needed for effective progress.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 185
Author(s):  
Nicola Cimmino ◽  
Giorgio Isoletta ◽  
Roberto Opromolla ◽  
Giancarmine Fasano ◽  
Aniello Basile ◽  
...  

The continuous growth of space debris motivates the development and the improvement of tools that support the monitoring of a more and more congested space environment. Satellite breakup models play a key role to predict and analyze orbital debris evolution, and the NASA Standard Breakup Model represents a widely used reference, with current activities relevant to its evolution and improvements especially towards fragmentation of small mass spacecraft. From an operational perspective, an important point for fragmentation modelling concerns the tuning of the breakup model to achieve consistency with orbital data of observed fragments. In this framework, this paper proposes an iterative approach to estimate the model inputs, and in particular, the parents’ masses involved in a collision event. The iterative logic exploits the knowledge of Two Line Elements (TLE) of the fragments at some time after the event to adjust the input parameters of the breakup model with the objective of obtaining the same number of real fragments within a certain tolerance. Atmospheric re-entry is accounted for. As a result, the breakup model outputs a set of fragments whose statistical distribution, in terms of number and size, is consistent with the catalogued ones. The iterative approach is demonstrated for two different scenarios (i.e., catastrophic collision and non-catastrophic collision) using numerical simulations. Then, it is also applied to a real collision event.


2021 ◽  
Author(s):  
Jérôme Daquin ◽  
Elisa Maria Alessi ◽  
Joseph O'Leary ◽  
Anne Lemaitre ◽  
Alberto Buzzoni

Abstract We describe the phase space structures related to the semi-major axis of Molniya-like satellites subject to tesseral and lunisolar resonances. In particular, we dissect the indirect interplay of the critical inclination resonance on the semi-geosynchronous resonance using a hierarchy of more realistic dynamical systems, thus discussing the dynamics beyond the integrable approximation. By introducing ad hoc tractable models averaged over the fast angles, we numerically demarcate the hyperbolic structures organising the long-term dynamics via the computation of finite-time variational indicators. Based on the publicly available two-line elements space orbital data, we identify two satellites, namely M1-69 and M1-87, displaying fingerprints consistent with the dynamics associated to the hyperbolic set. The computations of the associated dynamical maps highlight that the spacecraft are trapped within the hyperbolic tangle.


2021 ◽  
Author(s):  
Matthieu Volat ◽  
Cathy Quantin-Nataf ◽  
Patrick Thollot ◽  
Lucia Mandon

<p>MarsSI is a platform to help find and process Mars orbital data. Originaly developed in the context of the e-Mars project (2012-2017) funded by the European Research Council, it was certified in 2017 as french national Research Infrastructure by the Centre National de la Recherche Scientifique (CNRS) as part of the Planetary Surface Portal (PSUP) [2].</p><p>MarsSI client interface is a web application. The user is provided a map based interface where available products are displayed as footprints. The user can browse and select data from here. A workspace view, allows the user to better review product selection individually. This is also the view where user will be able to request dataset processing.</p><p>All MarsSI proposed pipelines are fully automated and do not require user parametrization. This allows us to keep our global catalog reasonable and have only one version of a single product at a time, that is shared between all users. To retrieve a product, the user will request a copy operation to its home directory, where it will be available for 30 days through SFTP access (the product is kept can be copied again after this).</p><p>As of 2021, MarsSI indexes and give access to the optical data (visible, multi and hyperspectral) and derived products from three missions: Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter. Our emphasis was to provide ”ready-to-use” products in regards of calibration, refinements and georeferencing. The user will be able to visualize and interpret the data in GIS or remote sensing software.</p><p>MarsSI provides access to various optical datasets for visible, multi- and hypespectral data from the various martian orbital missions over the years. We also offer multiple Digital Elevation Model (DEM) datasets. Some of them are provided from external sources (such as those provided by the HiRISE and HSRC teams). But users can also requests med- and high-resolution DEMs generated using the Ames Stereo Pipeline software that are computed on our platform using a custom developed workflow.</p><p>MarsSI is open to the world­ wide scientific community. As of december 2020, we count 215 registered users across 128 institutes. Since it is a french service, 25% of the users are from France, but we also offer data to scientists from the USA, UK, India and China.</p><p>Built upon opensource frameworks and using standardized protocols, MarsSI offers the scientific communities an easy way to process data, most notably DEMs that can be derived from CTX and HiRISE data collection.</p>


Sign in / Sign up

Export Citation Format

Share Document