scholarly journals Observation of a Very Massive Galaxy Cluster at $$\boldsymbol{z}$$ = 0.76 in the SRG/eROSITA All-Sky Survey

2021 ◽  
Vol 47 (7) ◽  
pp. 443-453
Author(s):  
R. A. Burenin ◽  
I. F. Bikmaev ◽  
M. R. Gilfanov ◽  
A. A. Grokhovskaya ◽  
S. N. Dodonov ◽  
...  
2016 ◽  
Vol 817 (2) ◽  
pp. 122 ◽  
Author(s):  
Mark Brodwin ◽  
Michael McDonald ◽  
Anthony H. Gonzalez ◽  
S. A. Stanford ◽  
Peter R. Eisenhardt ◽  
...  

2008 ◽  
Vol 23 (17n20) ◽  
pp. 1506-1513 ◽  
Author(s):  
KEIICHI UMETSU ◽  
YUKI OKURA ◽  
TOSHIFUMI FUTAMASE

We present a method for measuring higher-order weak lensing distortions of faint background galaxies, namely the weak gravitational flexion, by fully extending the Kaiser, Squires & Broadhurst method to include higher-order lensing image characteristics (HOLICs) introduced by Okura, Umetsu, & Futamase. Our HOLICs formalism allows accurate measurements of flexion from practical observational data in the presence of non-circular, anisotropic point spread function. We have applied our method to ground-based Subaru observations of the massive galaxy cluster A1689 at a redshift of z = 0.183. From the high-precision measurements of spin-1 first flexion, we obtain a high-resolution mass map in the central region of A1689. The reconstructed mass map shows a bimodal feature in the central 4′ × 4′ region of the cluster. The major, pronounced mass peak is associated with the brightest cluster galaxy and central cluster members, while the secondary peak is associated with a local concentration of bright galaxies. In Fourier space we separate the reconstructed mass distribution into cluster and subhalo components, from which we obtain projected subhalo masses associated with the primary and the secondary peaks to be M1 = (2.2 ± 0.4) × 1013M⊙/h, and M2 = (1.1 ± 0.3) × 1013M⊙/h, respectively.


1996 ◽  
Vol 467 ◽  
pp. 168 ◽  
Author(s):  
H. Boehringer ◽  
D. M. Neumann ◽  
S. Schindler ◽  
R. C. Kraan-Korteweg
Keyword(s):  
X Ray ◽  

2020 ◽  
Vol 492 (2) ◽  
pp. 2405-2417 ◽  
Author(s):  
W Boschin ◽  
M Girardi ◽  
F Gastaldello

ABSTRACT We present the study of the internal dynamics of the intriguing galaxy cluster Abell 1703, a system hosting a probable giant radio halo whose dynamical status is still controversial. Our analysis is based on unpublished spectroscopic data acquired at the Italian Telescopio Nazionale Galileo and data publicly available in the literature. We also use photometric data from the Sloan Digital Sky Survey. We select 147 cluster members and compute the cluster redshift 〈z〉 ∼ 0.277 and the global line-of-sight velocity dispersion σv ∼ 1300 km s−1. We infer that Abell 1703 is a massive cluster: M200 ∼ 1–2 × 1015 M⊙. The results of our study disagree with the picture of an unimodal, relaxed cluster as suggested by previous studies based on the gravitational lensing analysis and support the view of a perturbed dynamics proposed by recent works based on Chandra X-ray data. The first strong evidence of a dynamically disturbed cluster comes from the peculiarity of the BCG velocity with respect to the first moment of the velocity distribution of member galaxies. Moreover, several statistical tests employed to study the cluster galaxies kinematics find significant evidence of substructure, being Abell 1703 composed by at least two or three subclumps probably caught after the core–core passage. In this observational scenario, the suspected existence of a radio halo in the centre of this cluster is not surprising and well agrees with the theoretical models describing diffuse radio sources in clusters.


2019 ◽  
Vol 626 ◽  
pp. A48 ◽  
Author(s):  
M. E. Ramos-Ceja ◽  
F. Pacaud ◽  
T. H. Reiprich ◽  
K. Migkas ◽  
L. Lovisari ◽  
...  

Presently, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function of the ROSAT satellite limits the attainable amount of spatial information for the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher-resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXC J2306.6−1319, ZwCl 1665, and RXC J0034.6−0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX, 500 ≥ 5 × 10−12 erg s−1 cm−2 in the 0.1−2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually seven, rather than three. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl 1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster–cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected.


2019 ◽  
Vol 631 ◽  
pp. A148
Author(s):  
A. Aguado-Barahona ◽  
R. Barrena ◽  
A. Streblyanska ◽  
A. Ferragamo ◽  
J. A. Rubiño-Martín ◽  
...  

Context. The second legacy catalog of Planck Sunyaev–Zeldovich (SZ) sources, hereafter PSZ2, provides the largest galaxy cluster sample selected by means of the SZ signature of the clusters in a full sky survey. In order to fully characterize this PSZ2 sample for cosmological studies, all the members should be validated and the physical properties of the clusters, including mass and redshift, should be derived. However, at the time of its publication, roughly 21% of the 1653 PSZ2 members had no known counterpart at other wavelengths. Aims. Here, we present the second and last year of observations of our optical follow-up program 128-MULTIPLE-16/15B (hereafter LP15), which has been developed with the aim of validating all the unidentified PSZ2 sources in the northern sky with declinations higher than −15° that have no correspondence in the first Planck catalog PSZ1. The description of the program and the first year of observations have been presented previously. Methods. The LP15 program was awarded 44 observing nights that were spread over two years with the Isaac Newton Telescope (INT), the Telescopio Nazionale Galileo (TNG), and the Gran Telescopio Canarias (GTC), all at Roque de los Muchachos Observatory (La Palma). Following the same method as described previously, we performed deep optical imaging for more than 200 sources with the INT and spectroscopy for almost 100 sources with the TNG and GTC at the end of the LP15 program. We adopted robust confirmation criteria based on velocity dispersion and richness estimates for the final classification of the new galaxy clusters as the optical counterparts of the PSZ2 detections. Results. Here, we present the observations of the second year of LP15, as well as the final results of the program. The full LP15 sample comprises 190 previously unidentified PSZ2 sources. Of these, 106 objects were studied before, while the remaining sample (except for 6 candidates) has been completed in the second year and is discussed here. In addition to the LP15 sample, we here study 42 additional PSZ2 objects that were originally validated as real clusters because they matched a WISE or PSZ1 counterpart, but they had no measured spectroscopic redshift. In total, we confirm the optical counterparts for 81 PSZ2 sources after the full LP15 program, 55 of them with new spectroscopic information. Forty of these 81 clusters are presented in this paper. After the LP15 observational program the purity of the PSZ2 catalog has increased from 76.7% originally to 86.2%. In addition, we study the possible reasons for false detection, and we report a clear correlation between the number of unconfirmed sources and galactic thermal dust emission.


1998 ◽  
Vol 50 (2) ◽  
pp. 195-201 ◽  
Author(s):  
Takayuki Tamura ◽  
Yasushi Fukazawa ◽  
Hidehiro Kaneda ◽  
Kazuo Makishima ◽  
Makoto Tashiro ◽  
...  

2013 ◽  
Vol 557 ◽  
pp. A117 ◽  
Author(s):  
M. Pandey-Pommier ◽  
J. Richard ◽  
F. Combes ◽  
K. S. Dwarakanath ◽  
B. Guiderdoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document