Numerical simulation of high-gradient magnetic filtration

2016 ◽  
Vol 61 (9) ◽  
pp. 1292-1298 ◽  
Author(s):  
B. A. Gusev ◽  
V. G. Semenov ◽  
V. V. Panchuk
1986 ◽  
Vol 58 (1-2) ◽  
pp. 123-127 ◽  
Author(s):  
H.Th.J. Reijers ◽  
R.P.A.R. van Kleef ◽  
H.W. Myron ◽  
P. Wyder ◽  
M.R. Parker

1976 ◽  
Vol 12 (6) ◽  
pp. 904-906 ◽  
Author(s):  
J. Harland ◽  
L. Nilsson ◽  
M. Wallin

2013 ◽  
Vol 105 ◽  
pp. 114-120 ◽  
Author(s):  
Katharina Menzel ◽  
Carel W. Windt ◽  
Johannes A. Lindner ◽  
Aymeé Michel ◽  
Hermann Nirschl

1975 ◽  
Vol 11 (5) ◽  
pp. 1591-1593 ◽  
Author(s):  
J. Oberteuffer ◽  
I. Wechsler ◽  
P. Marston ◽  
M. McNallan

1984 ◽  
Vol 1 (2) ◽  
pp. 67-99
Author(s):  
Aik Chong Lua ◽  
Robert F. Boucher

Highly successful tests have shown that high gradient magnetic filtration can provide a viable alternative to conventional filtration to curb the amount of stack gas particulate emissions from iron-based industries, especially steelmaking processes. Using basic oxygen furnace dust in our work at Sheffield University, filtration efficiencies of 99% and greater were obtained for submicron particles down to an optically measurable 0.24 μm diameter; for particles of 1 μm and above, 100% filtration efficiency was achieved. High gas throughput, together with low pressure losses, low applied magnetic fields and good filter matrix loadability all further indicate the potential commercial practicality of HGMF in the steelmaking industry.


1977 ◽  
Vol 11 (9) ◽  
pp. 913-916 ◽  
Author(s):  
Ruth Yadidia ◽  
Aharon Abeliovich ◽  
Georges Belfort

Sign in / Sign up

Export Citation Format

Share Document