Determination of nickel in the solution resulted from sulfuric-acid leaching of the active mass of the nickel-oxide electrode of the nickel-iron battary

2009 ◽  
Vol 82 (2) ◽  
pp. 337-339 ◽  
Author(s):  
E. N. Volkova ◽  
A. I. Demidov
2020 ◽  
Vol 299 ◽  
pp. 1010-1016
Author(s):  
V.V. Demiyan ◽  
E.A. Zelenskaya ◽  
N.P. Shabelskaya

The paper presents experimental data on nickel oxidation during electrolysis under rectangular alternating current in alkaline solutions, when the cathode pulse (Iк ) is greater than the anode pulse ( Iа ). During the process, intense nickel destruction occurs forming bivalent oxide powder. Under prolonged electrolysis, this powder deposits at the bottom of the electrolyzer in the form of a sponge. The results obtained can be used to produce active mass in the porous nickel oxide electrode of a chemical current source.


2013 ◽  
Vol 813 ◽  
pp. 269-272
Author(s):  
Gui Ming Shi ◽  
Xia Jing Yu

For a nickel oxide ore, 1# ore sample was treated by sulfuric acid leaching and 2# ore sample was treated by ammonium sulfate roasting-sulfuric acid leaching through exploring experiments. The leaching rate of 92.04% with l# nickel oxide ore and the leaching rate of 72.36% with 2# nickel oxide ore were obtained by conducting the conditional experiments of sulfuric acid concentration, leaching time, ammonium sulfate dosage and so on.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 810
Author(s):  
Zhanyong Guo ◽  
Ping Guo ◽  
Guang Su ◽  
Fachuang Li

In this paper, nickel-containing residue, a typical solid waste produced in the battery production process, was used to study the cavitation characteristics of ultrasonic waves in a liquid–solid reaction. The ultrasonically-enhanced leaching technology for multicomponent and complex nickel-containing residue was studied through systematic ultrasonic-conventional comparative experiments. An ultrasonic leaching kinetics model was established which provided reliable technological guidance and basic theory for the comprehensive utilization of nickel-containing residue. In the study, it was found that ultrasonically-enhanced leaching for 40 min obtained the same result as conventional leaching for 80 min, and the Ni extraction degree reached more than 95%. According to the kinetic fitting of the leaching process, it was found that the sulfuric acid leaching process belonged to the diffusion-controlled model of solid product layers under conventional and ultrasonic conditions, and the activation energy of the reaction was Ea1 = 17.74 kJ/mol and Ea2 = 5.04 kJ/mol, respectively.


2021 ◽  
pp. 105799
Author(s):  
Chengjin Xu ◽  
Ling Li ◽  
Miaomiao Zhang ◽  
Xiao Meng ◽  
Xiujing Peng ◽  
...  

2013 ◽  
Vol 789 ◽  
pp. 522-530 ◽  
Author(s):  
Latifa Hanum Lalasari ◽  
Rudi Subagja ◽  
Akhmad Herman Yuwono ◽  
Florentinus Firdiyono ◽  
Sri Harjanto ◽  
...  

lmenite (FeO.TiO2) ore from Bangka island-Indonesia is a potential raw material for synthesizing titanium dioxide (TiO2), which can be used further as pigmen and photocatalyst. The fabrication of TiO2 particles from ilmenite can be carried out through the solvent extraction using sulfuric acid route. Therefore, the solubility of the ilmenite ore in sulfuric acid environment is one of the key factors to obtain the desired TiO2 particles. The current research is aimed at comparing the solubility of pristine Bangka ilmenite ore with that of precedingly decomposed by sodium hidroxide (NaOH) in pressurized and atmospheric reflux reactors. The dissolution of both precursors was carried out in those reactors under various temperatures of 75, 100, 125, 150 and 175°C. The results showed that the optimum dilution was achieved at 150°C. The obtained recovery of ilmenite was 88.8 % for the pressurized reactor and 75.5% for the atmospheric reflux reactor. The solubility of titanium (Ti) element increased steadily to reach a recovery of 68% at 150°C and decreased significantly afterwards. It was also found that the increase of iron (Fe) element solubility was proportional to the increase of processing temperatures.


Sign in / Sign up

Export Citation Format

Share Document