Bioactive Small Molecules Having a Fatty Residue. Part VI: Synthesis, Cytotoxicity Evaluation, and Molecular Docking Studies of New Pyrimidine Derivatives as Antitumor Agents

2020 ◽  
Vol 56 (12) ◽  
pp. 2212-2221
Author(s):  
El-Sayed M. A. Yakout ◽  
Hayam A. Abd El Salam ◽  
Galal A. M. Nawwar
ChemInform ◽  
2013 ◽  
Vol 44 (52) ◽  
pp. no-no
Author(s):  
Ahmed M. Fargualy ◽  
Nargues S. Habib ◽  
Khadiga A. Ismail ◽  
Ahmed M. M. Hassan ◽  
Marwa T. M. Sarg

Author(s):  
Vivek B. Panchabhai ◽  
Santosh R. Butle ◽  
Parag G. Ingole

We report a novel scaffold of N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives with potent antibacterial activity by targeting this biotin carboxylase enzyme. The series of eighteen N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives were synthesized, characterized and further molecular docking studied to determine the mode of binding and energy changes with the crystal structure of biotin carboxylase (PDB ID: 2V58) was employed as the receptor with compounds 6a-r as ligands. The results obtained from the simulation were obtained in the form of dock score; these values represent the minimum energies. Compounds 6d, 6l, 6n, 6o, 6r and 6i showed formation of hydrogen bonds with the active site residues and van Der Walls interactions with the biotin carboxylase enzyme in their molecular docking studies. This compound can be studied further and developed into a potential antibacterial lead molecule.


Author(s):  
Gurubasavaraja S.P. Matada ◽  
Nahid Abbas ◽  
Prasad S. Dhiwar ◽  
Rajdeep Basu ◽  
Giles Devasahayam

Background: The abnormal signaling from tyrosine kinase causes many types of cancers namely breast cancer, non-small cell lung cancer, and chronic myeloid leukemia. This research reports the in-silico, synthesis, and in-vitro study of novel pyrimidine derivatives as EGFR inhibitors. Objective: The objective of the research study is to discover more promising lead compounds using drug discovery process, in which the rational drug design is achieved by the molecular docking and virtual pharmacokinetic studies. Methods: The molecular docking studies were carried out using discovery studio 3.5-version software. The molecules with good docking and binding energy score were synthesized as well as their structures were confirmed by FT-IR, NMR, Mass and elemental analysis. Subsequently molecules were evaluated for their anticancer activity using MDA-MB-231, MCF-7 and A431 breast cancer cell lines by MTT and tyrosine kinase assay methodology. Results: Pyrimidine derivatives displayed anticancer activity. Particularly, compound R8 shows significant cytotoxicity against MDA-MB-231 with an IC50 18.5 ± 0.6 µM. Molecular docking studies proved that the compound R8 has good binding fitting by forming hydrogen bonds with amino acid residues at ATP binding sites of EGFR. Conclusion: Eight pyrimidine derivatives were designed, synthesized and evaluated against breast cancer cell lines. Compound R8 significantly inhibited the growth of MDA-MB-231 and MCF-7. Molecular docking studies reveled that compound R8 has good fitting by forming different Hydrogen bonding interactions with amino acids at ATP binding site of epidermal growth factor receptor target. Compound R8 was a promising lead molecule that showed better results as compared to other compounds in in-vitro studies.


2022 ◽  
Vol 1249 ◽  
pp. 131551
Author(s):  
El Sayed H. El Ashry ◽  
Laila F. Awad ◽  
Mohamed E.I. Badawy ◽  
Entsar I. Rabea ◽  
Nihal A. Ibrahim ◽  
...  

2015 ◽  
Vol 11 (2) ◽  
pp. 73-84 ◽  
Author(s):  
Sathish Kumar Paramashivam ◽  
◽  
Kalaivani Elayaperumal ◽  
Boopala Natarajan ◽  
Manjula Ramamoorthy ◽  
...  

2016 ◽  
Vol 25 (11) ◽  
pp. 2534-2546 ◽  
Author(s):  
Siva Nagi Reddy Mule ◽  
Sharmila Nurbhasha ◽  
J.N. Kolla ◽  
Surender Singh Jadav ◽  
Venkatesan Jayaprakash ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Adriana Rathner ◽  
Petr Rathner ◽  
Andreas Friedrich ◽  
Michael Wießner ◽  
Christian Manuel Kitzler ◽  
...  

<b><i>Introduction:</i></b> Epidermolysis bullosa (EB) describes a family of rare genetic blistering skin disorders. Various subtypes are clinically and genetically heterogeneous, and a lethal postpartum form of EB is the generalized severe junctional EB (gs-JEB). gs-JEB is mainly caused by premature termination codon (PTC) mutations in the skin anchor protein LAMB3 (laminin subunit beta-3) gene. The ribosome in majority of translational reads of LAMB3PTC mRNA aborts protein synthesis at the PTC signal, with production of a truncated, nonfunctional protein. This leaves an endogenous readthrough mechanism needed for production of functional full-length Lamb3 protein albeit at insufficient levels. Here, we report on the development of drugs targeting ribosomal protein L35 (rpL35), a ribosomal modifier for customized increase in production of full-length Lamb3 protein from a LAMB3PTC mRNA. <b><i>Methods:</i></b> Molecular docking studies were employed to identify small molecules binding to human rpL35. Molecular determinants of small molecule binding to rpL35 were further characterized by titration of the protein with these ligands as monitored by nuclear magnetic resonance (NMR) spectroscopy in solution. Changes in NMR chemical shifts were used to map the docking sites for small molecules onto the 3D structure of the rpL35. <b><i>Results:</i></b> Molecular docking studies identified 2 FDA-approved drugs, atazanavir and artesunate, as candidate small-molecule binders of rpL35. Molecular interaction studies predicted several binding clusters for both compounds scattered throughout the rpL35 structure. NMR titration studies identified the amino acids participating in the ligand interaction. Combining docking predictions for atazanavir and artesunate with rpL35 and NMR analysis of rpL35 ligand interaction, one binding cluster located near the N-terminus of rpL35 was identified. In this region, the nonidentical binding sites for atazanavir and artesunate overlap and are accessible when rpL35 is integrated in its natural ribosomal environment. <b><i>Conclusion:</i></b> Atazanavir and artesunate were identified as candidate compounds binding to ribosomal protein rpL35 and may now be tested for their potential to trigger a rpL35 ribosomal switch to increase production of full-length Lamb3 protein from a LAMB3PTC mRNA for targeted systemic therapy in treating gs-JEB.


Sign in / Sign up

Export Citation Format

Share Document