Design, Synthesis, In Silico and In Vitro Evaluation of Novel Pyrimidine Derivatives as EGFR Inhibitors

Author(s):  
Gurubasavaraja S.P. Matada ◽  
Nahid Abbas ◽  
Prasad S. Dhiwar ◽  
Rajdeep Basu ◽  
Giles Devasahayam

Background: The abnormal signaling from tyrosine kinase causes many types of cancers namely breast cancer, non-small cell lung cancer, and chronic myeloid leukemia. This research reports the in-silico, synthesis, and in-vitro study of novel pyrimidine derivatives as EGFR inhibitors. Objective: The objective of the research study is to discover more promising lead compounds using drug discovery process, in which the rational drug design is achieved by the molecular docking and virtual pharmacokinetic studies. Methods: The molecular docking studies were carried out using discovery studio 3.5-version software. The molecules with good docking and binding energy score were synthesized as well as their structures were confirmed by FT-IR, NMR, Mass and elemental analysis. Subsequently molecules were evaluated for their anticancer activity using MDA-MB-231, MCF-7 and A431 breast cancer cell lines by MTT and tyrosine kinase assay methodology. Results: Pyrimidine derivatives displayed anticancer activity. Particularly, compound R8 shows significant cytotoxicity against MDA-MB-231 with an IC50 18.5 ± 0.6 µM. Molecular docking studies proved that the compound R8 has good binding fitting by forming hydrogen bonds with amino acid residues at ATP binding sites of EGFR. Conclusion: Eight pyrimidine derivatives were designed, synthesized and evaluated against breast cancer cell lines. Compound R8 significantly inhibited the growth of MDA-MB-231 and MCF-7. Molecular docking studies reveled that compound R8 has good fitting by forming different Hydrogen bonding interactions with amino acids at ATP binding site of epidermal growth factor receptor target. Compound R8 was a promising lead molecule that showed better results as compared to other compounds in in-vitro studies.

2020 ◽  
Vol 32 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
P. Raghurama Shetty ◽  
G. Shivaraja ◽  
G. Krishnaswamy ◽  
K. Pruthviraj ◽  
Vivek Chandra Mohan ◽  
...  

In this work, some 2-phenyl quinoline-4-carboxamide derivatives (5a-j) were synthesized via base catalyzed Pfitzinger reaction of isatin and acetophenone followed by C-N coupling reaction using POCl3 and assessed them for their in vitro antimicrobial and anticancer activity. The structure of newly synthesized compound were established by FT-IR, 1H & 13C NMR and Mass spectrometric analysis. The synthesized carboxamides were subjected to preliminary in vitro antibacterial activity as well as for antifungal activity. Results of antibacterial activity were compared with standard antibacterial (ciprofloxocin) and antifungal (fluconozole). Among the tested compounds, 5d, 5f and 5h exhibited promising activity with zone of inhibition ranging from 10 to 25 mm. Further, the anticancer activity determined using MTT assay against two cancer cell lines. Compounds 5b, 5d, 5f and 5h showed good anticancer activity among all the other derivatives. In order to correlate the in vitro results, in silico ADME and Molecular docking studies were carried out for (5a-j). ADME properties results showed that all the compounds obey rule of Five rule except 5a, 5e and 5g compound. Molecular docking studies of the synthesized compounds showed good binding affinity through hydrogen bond interactions with key residues on active sites as well as neighboring residues within the active site of chosen target proteins viz. antibacterial, antifungal and anticancer. Comparison of both results of in silico as well as in vitro investigation suggests that the synthesized compounds may act as potential antimicrobial as well as anticancer agents.


2019 ◽  
Vol 16 (8) ◽  
pp. 619-626
Author(s):  
Arunkumar Thiriveedhi ◽  
Ratnakaram Venkata Nadh ◽  
Navuluri Srinivasu ◽  
Narayana Murthy Ganta

Nowadays, hybrid drugs have gained a significant role in the treatment of different health problems. Most of the hybrid molecules with different heterocyclic moieties were proved to be potent anti-tumor agents in cancer chemotherapy. Hence, the present study is aimed at the evaluation of in vitro anticancer activity of novel hybrid molecules (pyrazolyl benzoxazole conjugates) and to investigate their anticancer activity by molecular docking studies. Designed, synthesized and characterized the novel pyrazolyl benzoxazole conjugates. Anticancer activity of these compounds was determined by SRB assay. Then molecular docking studies were carried out against proto-oncogene tyrosine-protein kinase (ATP-Src, PDB: 2BDF), a putative target for cancer. All the synthesized compound derivatives were evaluated against MCF-7, KB, Hop62 and A549 cancer cell lines. Compounds 9b and 9c exhibited excellent anticancer activities with GI50 values of <0.1 µM against MCF-7 and A549 cell lines. Compound 9e exhibited good antitumor activity on MCF-7 and A-549 with GI50 values of 0.12 µM and 0.19 µM respectively. Compound 9g showed better anticancer activity on A-549 cancer cell line with GI50 of 0.34 µM. The two-hybrid molecules 9b and 9c are found to be comparably potent with the standard drug doxorubicin and may act as drug lead compounds in medicinal chemistry aspect. The present docking investigation proved that having benzoxazole of compound 9c at the position of benzofuran of reference compound (N-acetyl pyrazoline derivative) might be valid for contributing to anti-cancer activity.


2020 ◽  
Vol 16 ◽  
Author(s):  
Bhagwat S. Jadhav ◽  
Vipul P. Purohit ◽  
Ramesh S. Yamgar ◽  
Rajesh S. Kenny ◽  
Suraj N. Mali ◽  
...  

Background: Tuberculosis (TB) continues to be the most threatening cause of death in recent years. There is urgent need of search more potent, less toxic antitubercular agents. Methods: A set of five new 1,3,4-oxadiazolyl-imidazo-1,2-pyridine derivatives (4a-4e) was synthesized and screened invitro for their antibacterial activity against Mycobacterium tuberculosis (H37 RV strain) ATCC No-27294. Results: Compound 4b displayed potent antitubercular activity at MIC 6.25 µg/mL. In-silico molecular docking studies were performed for evaluation of the binding patterns of compounds 4a-4e in the binding site of proteins like, Pantothenate synthatase and enoyl acyl reductase inhibitor. The outcomes of the in- vitro antitubercular studies were in well agreement with the molecular docking studies. These newly synthesized compounds were found to have good ADMET profile. We also explored possible anticancer activity using in-silico methods. Conclusion: These results shows that readily synthesized 1,3,4-oxadiazolyl-imidazo-1,2-pyridine derivatives (4a-4e) are attracting new class of potent anti-TB targets as well as possible anticancer activity that worth additional opportunities for improvements.


Author(s):  
SEEMA S. NAIR ◽  
JOYAMMA VARKEY

Objective: This study aims to isolate an active phytoconstituent from ethanolic leaf extract of Pothos scandens Linn., to evaluate in vitro anticancer activity, and to carry out molecular docking studies of the isolated phytoconstituent. Methods: The bioactive constituent 1,1’-(4,5-dihydroxy benzene-1,2-diyl) bisoct-7-en-1-one, a phenolic compound, was isolated by using chromatographic methods and the structure was elucidated by various spectroscopic techniques. In vitro anticancer activity was evaluated against HeLa and MCF 7 cell lines. The viability of cells was evaluated by direct observation of cells by an Inverted phase-contrast microscope and by the MTT assay method. IC50 was calculated using the linear regression model. Results: The results of anticancer studies revealed that different concentrations of the ethanolic extract of leaves of Pothos scandens Linn. exhibited cytotoxic activity against HeLa and MCF 7 cell lines with IC50 of 22.9 and 18.32 μg/ml, respectively. The anticancer potential of the plant was revalidated by in silico molecular docking study with Vascular Endothelial Growth Factor Receptor 2 (VEGFR2, PDB ID: 4AG8) using Discovery studio 2018. Results of the docking study showed that the ligand exhibited strong interaction with the VEGFR2 kinase with significant binding energy. Conclusion: Pothos scandens linn. can be used for the isolation of potent anticancer agents.


2020 ◽  
Vol 52 (6) ◽  
pp. 475-494
Author(s):  
Hadiza Abdulrahman Lawal ◽  
Adamu Uzairu ◽  
Sani Uba

AbstractThe anti-proliferative activities of Novel series of 2-(4-fluorophenyl) imidazol-5-ones against MCF-7 breast cancer cell line were explored via in-slico studies which includes Quantitative structure–activity relationship QSAR, molecular docking studies, designing new compounds, and analyzing the pharmacokinetics properties of the designed compounds. From the QSAR analysis, model number one emerged the best as seen from the arithmetic assessments of (R2) = 0.6981, (R2adj) = 0.6433, (Q2) = 0.5460 and (R2pred) of 0.5357. Model number one was used in designing new derivative compounds, with higher effectiveness against estrogen positive breast cancer (MCF-7 cell line). The Molecular docking studies between the derivatives and Polo-like kinases (Plk1) receptor proved that the derivatives of 2-(4-fluorophenyl) imidazol-5-ones bind tightly to the receptor, thou ligand 24 and 27 had the highest binding affinities of −8.8 and − 9.1 kcal/mol, which was found to be higher than Doxorubicin with a docking score of −8.0 kcal/mol. These new derivatives of 2-(4-fluorophenyl) imidazol-5-ones shall be excellent inhibitors against (plk1). The pharmacokinetics analysis performed on the new structures revealed that all the structures passed the test and also the Lipinski rule of five, and they could further proceed to pre-clinical tests. They both revealed a revolution in medicine for developing novel anti-breast cancer drugs against MCF-7 cell line.


2021 ◽  
Vol 11 (19) ◽  
pp. 9139
Author(s):  
Maria Stefania Sinicropi ◽  
Cinzia Tavani ◽  
Camillo Rosano ◽  
Jessica Ceramella ◽  
Domenico Iacopetta ◽  
...  

Breast cancer is still considered a high-incidence disease, and numerous are the research efforts for the development of new useful and effective therapies. Among anticancer drugs, carbazole compounds are largely studied for their anticancer properties and their ability to interfere with specific targets, such as microtubule components. The latter are involved in vital cellular functions, and the perturbation of their dynamics leads to cell cycle arrest and subsequent apoptosis. In this context, we report the anticancer activity of a series of carbazole analogues 1–8. Among them, 2-nitrocarbazole 1 exhibited the best cytotoxic profile, showing good anticancer activity against two breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 7 ± 1.0 and 11.6 ± 0.8 μM, respectively. Furthermore, compound 1 did not interfere with the growth of the normal cell line MCF-10A, contrarily to Ellipticine, a well-known carbazole derivative used as a reference molecule. Finally, in vitro immunofluorescence analysis and in silico studies allowed us to demonstrate the ability of compound 1 to interfere with tubulin organization, similarly to vinblastine: a feature that results in triggering MCF-7 cell death by apoptosis, as demonstrated using a TUNEL assay.


Author(s):  
HARSHITHA T ◽  
VINAY KUMAR T ◽  
VINEETHA T

Objective: The objective of the study was to perform in silico molecular docking and in vitro anticancer studies of proposed 1,2,4-triazole derivatives for the determination of their anticancer activity. Methods: A series of 10 triazole compounds with different substituents were drawn in ACD Lab ChemSketch software. Molecular and biological properties were identified using Molinspiration software. The compounds that obeyed Lipinski rule of five are subjected for pharmacokinetic parameters prediction and docking analysis. SwissDock ADME software is used for the prediction of absorption, distribution, metabolism, and elimination. Then, the compounds are docked with target enzymes in Chimera software 1.14 version. The molecular docking studies revealed favorable molecular interactions and binding energies. The compounds that showed good docking results were synthesized through wet lab synthesis and further preceded for in vitro anticancer studies. Results: Three compounds are selected for wet lab synthesis due to their good docking results compared to other compounds. The synthesized compounds are subjected to different in vitro anticancer studies and found to be having potential anticancer activity. Conclusion: The pharmacokinetic and docking studies conclude that the triazole compounds have potential as anticancer agents. The in vitro anticancer studies revealed that the triazole derivatives are having high potency of anticancer activity against pancreatic cell lines.


RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 51730-51744 ◽  
Author(s):  
Kang Zheng ◽  
Liu Jiang ◽  
Yan-Tuan Li ◽  
Zhi-Yong Wu ◽  
Cui-Wei Yan

Two new dicopper(ii) complexes were synthesized and structurally characterized. The effect of substituent groups on the bridging ligands was explored theoretically and experimentally.


Sign in / Sign up

Export Citation Format

Share Document