Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (theta to tensor-TTT)

2013 ◽  
Vol 39 (3) ◽  
pp. 347-350 ◽  
Author(s):  
R. S. Bubnova ◽  
V. A. Firsova ◽  
S. K. Filatov
1996 ◽  
Vol 60 (403) ◽  
pp. 963-972 ◽  
Author(s):  
Kevin S. Knight

AbstractThe thermal expansion tensor of crocoite has been determined from high-resolution neutron time-of-flight powder diffraction data. The temperature dependence of the lattice constants between 4.5 K and 290 K have been fitted to a quasi-harmonic Einstein model, and the temperature dependence of the thermal expansion tensor has been calculated for 60 K ≤ T ≤ 290 K. The magnitudes of the principal expansivities and their orientation exhibit saturation behaviour for temperatures above 300 K. The predicted saturated expansion coefficients are α11 = 33.1(1) × 10−6K−1, α22 = 15.72(3) × 10−6K−1, α33 = 3.36(1) × 10−6K−1, with α22 parallel to b and α11 lying at an angle of −37.86(5)° to c for the P21/n setting of the crystal structure. The direction of maximum expansion is approximately parallel to both and the least-squares line passing through the projection of the chromium atoms on (010). The direction of minimum expansion lies approximately parallel to [101]. No evidence was found for either a structural or magnetic phase transition between 4.5 K and 300 K.


2015 ◽  
Vol 71 (a1) ◽  
pp. s309-s309
Author(s):  
Rimma S. Bubnova ◽  
Vera A. Firsova ◽  
Sergey N. Volkov ◽  
Stanislav K. Filatov

2000 ◽  
Vol 64 (2) ◽  
pp. 291-300 ◽  
Author(s):  
K. S. Knight

AbstractHigh-resolution, neutron time-of-flight, powder diffraction data have been collected on natural crocoite between 873 and 1073 K. Thermal analysis carried out in the 1920s had suggested that chemically pure PbCrO4 exhibited two structural phase transitions, at 964 K, to the β phase, and at 1056 K, to the γ phase. In this study, no evidence was found for the α-β structural phase transition, however a high-temperature phase transition was found at ∼1068 K from the ambient-temperature monazite structure type to the baryte structure type. The phase transition, close to the temperatures reported for the β to γ phase modifications, is first order and is accompanied by a change in volume of −1.6%. The crystal structure of this phase has been refined using the Rietveld method to agreement factors of Rp = 0.018, Rwp = 0.019, Rp = 0.011. No evidence for premonitory behaviour was found in the temperature dependence of the monoclinic lattice constants rom 873 K to 1063 K and these have been used to determine the thermal expansion tensor of crocoite just below the phase transition. At 1000 K the magnitudes of the tensor coefficients are α11, 2.66(1) × 10−5 K−1; α22, 2.04(1) × 10−5 K−1; α33, 4.67(4) × 10−5 K−1; and α13, −1.80(2) × 10−5 K−1 using the IRE convention for the orientation of the tensor basis. The orientation of the principal axes of the thermal expansion tensor are very close to those reported previously for the temperature range 50–300 K.


1989 ◽  
Vol 28 (23) ◽  
pp. 5065 ◽  
Author(s):  
M. Balbás ◽  
D. Fraile ◽  
F. Gascón ◽  
A. Varadé ◽  
P. Vilarroig

2011 ◽  
Vol 34 (1) ◽  
pp. 23-26 ◽  
Author(s):  
P.A. Loiko ◽  
K.V. Yumashev ◽  
N.V. Kuleshov ◽  
G.E. Rachkovskaya ◽  
A.A. Pavlyuk

2007 ◽  
Vol 63 (2) ◽  
pp. 270-276 ◽  
Author(s):  
Thomas Reeswinkel ◽  
Sebastian Prinz ◽  
Karine M. Sparta ◽  
Georg Roth

The new spin ½ V4+ barium oxovanadate BaV4O9 was synthesized and studied by means of single-crystal X-ray diffraction. Its room-temperature structure is monoclinic, space group P2/c. We discuss the temperature evolution of the crystal structure and thermal expansion tensor of the material between 293 and 100 K.


Sign in / Sign up

Export Citation Format

Share Document