Collective flow in nuclear fragmentation induced by 4.4 GeV deuteron on gold target

2011 ◽  
Vol 8 (1) ◽  
pp. 19-22 ◽  
Author(s):  
V. A. Karnaukhov ◽  
S. P. Avdeyev ◽  
H. Oeschler ◽  
V. V. Kirakosyan ◽  
P. A. Rukoyatkin ◽  
...  
2000 ◽  
Vol 23 (2) ◽  
pp. 1-101
Author(s):  
A. Bonasera ◽  
M. Bruno ◽  
C. O. Dorso ◽  
P. F. Mastinu

1992 ◽  
Vol 543 (4) ◽  
pp. 703-721 ◽  
Author(s):  
L. Sihver ◽  
K. Aleklett ◽  
W. Loveland ◽  
P.L. McGaughey ◽  
D.H.E. Gross ◽  
...  

2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


2017 ◽  
Vol 967 ◽  
pp. 357-360 ◽  
Author(s):  
Koji Kawaguchi ◽  
Koichi Murase ◽  
Tetsufumi Hirano
Keyword(s):  

2013 ◽  
Vol 102 (9) ◽  
pp. 094105 ◽  
Author(s):  
Wanli Shang ◽  
Jiamin Yang ◽  
Yunsong Dong
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1887
Author(s):  
Theodoros Gaitanos

In this article we review the important role of non-equilibrium dynamics in reactions induced by ions and hadron beams to understand the fragmentation processes inside hadronic media. We discuss the single-particle dynamics in specific sources such as spectators in heavy-ion collisions and residual nuclear targets in hadron-induced reactions. Particular attention is given to the dynamics of hyperons. We further discuss the question regarding the onset of local instabilities, which are relevant for the appearance of fragmentation phenomena in nuclear reactions. We apply the theoretical formalism, that is, semi-classical transport embedded with statistical methods of nuclear fragmentation, to reactions induced by light ions and hadron beams. We discuss the results of nuclear fragmentation and, in particular, examine the formation of hypernuclei. Such studies are important for obtaining a deeper understanding of the equation of state in fragmenting matter and are relevant for forthcoming experiments, such as PANDA at FAIR and J-PARC in Japan.


Sign in / Sign up

Export Citation Format

Share Document