nuclear targets
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 25)

H-INDEX

34
(FIVE YEARS 3)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1887
Author(s):  
Theodoros Gaitanos

In this article we review the important role of non-equilibrium dynamics in reactions induced by ions and hadron beams to understand the fragmentation processes inside hadronic media. We discuss the single-particle dynamics in specific sources such as spectators in heavy-ion collisions and residual nuclear targets in hadron-induced reactions. Particular attention is given to the dynamics of hyperons. We further discuss the question regarding the onset of local instabilities, which are relevant for the appearance of fragmentation phenomena in nuclear reactions. We apply the theoretical formalism, that is, semi-classical transport embedded with statistical methods of nuclear fragmentation, to reactions induced by light ions and hadron beams. We discuss the results of nuclear fragmentation and, in particular, examine the formation of hypernuclei. Such studies are important for obtaining a deeper understanding of the equation of state in fragmenting matter and are relevant for forthcoming experiments, such as PANDA at FAIR and J-PARC in Japan.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4425
Author(s):  
Thomas Steele ◽  
Anhao Sam ◽  
Shawna Evans ◽  
Elizabeth Browning ◽  
Sheryl Krig ◽  
...  

To our knowledge, our group is the first to demonstrate that NRDP1 is located in the nucleus as well as the cytoplasm of CaP cells. Subcellular fractionation, immunohistochemistry, and immunofluorescence analysis combined with confocal microscopy were used to validate this finding. Subcellular fractionation followed by western blot analysis revealed a strong association between AR and NRDP1 localization when AR expression and/or cellular localization was manipulated via treatment with R1881, AR-specific siRNA, or enzalutamide. Transfection of LNCaP with various NRDP1 and AR constructs followed by immunoprecipitation confirmed binding of NRDP1 to AR is possible and determined that binding requires the hinge region of AR. Co-transfection with NRDP1 constructs and HA-ubiquitin followed by subcellular fractionation confirmed that nuclear NRDP1 retains its ubiquitin ligase activity. We also show that increased nuclear NRDP1 is associated with PSA recurrence in CaP patients (n = 162, odds ratio; 1.238, p = 0.007) and that higher levels of nuclear NRDP1 are found in castration resistant cell lines (CWR22Rv1 and PC3) compared to androgen sensitive cell lines (LNCaP and MDA-PCa-3B). The combined data indicate that NRDP1 plays a role in mediating CaP progression and supports further investigation of both the mechanism by which nuclear transport occurs and the identification of specific nuclear targets.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 726
Author(s):  
Minyoung Youn ◽  
Jesus Omar Gomez ◽  
Kailen Mark ◽  
Kathleen M. Sakamoto

Ribosomal S6 Kinases (RSKs) are a group of serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. Four RSK isoforms are directly activated by ERK1/2 in response to extracellular stimuli including growth factors, hormones, and chemokines. RSKs phosphorylate many cytosolic and nuclear targets resulting in the regulation of diverse cellular processes such as cell proliferation, survival, and motility. In hematological malignancies such as acute myeloid leukemia (AML), RSK isoforms are highly expressed and aberrantly activated resulting in poor outcomes and resistance to chemotherapy. Therefore, understanding RSK function in leukemia could lead to promising therapeutic strategies. This review summarizes the current information on human RSK isoforms and discusses their potential roles in the pathogenesis of AML and mechanism of pharmacological inhibitors.


2021 ◽  
Author(s):  
Dadnover Vargas-Ibarra ◽  
Mariana Velez-Vasquez ◽  
Maria Bermudez-Munoz

Protein phosphorylation represents a rapid and reversible post-translational regulation that enables a fast control of protein activation that play key roles in cell signaling. For instance, Mitogen Activated Protein Kinase (MAPK) pathways are activated upon sequential phosphorylations, resulting in phosphorylation of cytosol and nuclear targets. We focus here on MAPK ERK1/2 signaling that accounts for diverse cellular responses such as cell cycle progression, proliferation, differentiation, senescence, migration, formation of GAP junctions, cell adhesion, cell motility, survival and apoptosis. We review the role of protein phosphorylation in MAPK ERK1/2 activation, in its regulation in time and space and how its dysregulation can lead to tumorigenesis.


2020 ◽  
Vol 21 (21) ◽  
pp. 8132
Author(s):  
Shelly Mahlab-Aviv ◽  
Keren Zohar ◽  
Yael Cohen ◽  
Ayelet R. Peretz ◽  
Tsiona Eliyahu ◽  
...  

MicroRNAs (miRNAs) act as negative regulators of gene expression in the cytoplasm. Previous studies have identified the presence of miRNAs in the nucleus. Here we study human breast cancer-derived cell-lines (MCF-7 and MDA-MB-231) and a non-tumorigenic cell-line (MCF-10A) and compare their miRNA sequences at the spliceosome fraction (SF). We report that the levels of miRNAs found in the spliceosome, their identity, and pre-miRNA segmental composition are cell-line specific. One such miRNA is miR-7704 whose genomic position overlaps HAGLR, a cancer-related lncRNA. We detected an inverse expression of miR-7704 and HAGLR in the tested cell lines. Specifically, inhibition of miR-7704 caused an increase in HAGLR expression. Furthermore, elevated levels of miR-7704 slightly altered the cell-cycle in MDA-MB-231. Altogether, we show that SF-miR-7704 acts as a tumor-suppressor gene with HAGLR being its nuclear target. The relative levels of miRNAs found in the spliceosome fractions (e.g., miR-100, miR-30a, and let-7 family) in non-tumorigenic relative to cancer-derived cell-lines was monitored. We found that the expression trend of the abundant miRNAs in SF was different from that reported in the literature and from the observation of large cohorts of breast cancer patients, suggesting that many SF-miRNAs act on targets that are different from the cytoplasmic ones. Altogether, we report on the potential of SF-miRNAs as an unexplored route for cancerous cell state.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Trinda Anne Ting ◽  
Alexandre Chaumet ◽  
Frederic Andre Bard

Abstract Biologics such as peptides and antibodies are a well-established class of therapeutics. However, their intracellular delivery remains problematic. In particular, methods to efficiently inhibit intra-nuclear targets are lacking. We previously described that Pseudomonas Exotoxin A reaches the nucleoplasm via the endosomes-to-nucleus trafficking pathway. Here, we show that a non-toxic truncated form of PE can be coupled to peptides and efficiently reach the nucleoplasm. It can be used as a Peptide Nuclear Delivery Device (PNDD) to deliver polypeptidic cargos as large as Glutathione- S-transferase (GST) to the nucleus. PNDD1 is a fusion of PNDD to the c-myc inhibitor peptide H1. PNDD1 is able to inhibit c-Myc dependent transcription at nanomolar concentration. In contrast, H1 fused to various cell-penetrating peptides are active only in the micromolar range. PNDD1 attenuates cell proliferation and induces cell death in various tumor cell lines. In particular, several patient-derived Diffuse Large B-Cell Lymphomas cell lines die after exposure to PNDD1, while normal B-cells survive. Altogether, our data indicate that PNDD is a powerful tool to bring active cargo to the nucleus and PNDD1 could be the basis of a new therapy against lymphoma.


2020 ◽  
Author(s):  
Charlotte M. M. Gommers ◽  
María Águila Ruiz-Sola ◽  
Alba Ayats ◽  
Lara Pereira ◽  
Marta Pujol ◽  
...  

AbstractWhen germinating in the light, Arabidopsis seedlings undergo photomorphogenic development, characterized by short hypocotyls, greening and expanded cotyledons. Stressed chloroplasts emit retrograde signals to the nucleus that induce developmental responses and repress photomorphogenesis. The nuclear targets of these retrograde signals are not yet fully known. Here, we show that lincomycin-treated seedlings (which lack developed chloroplasts) show strong phenotypic similarities to seedlings treated with ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC), as both signals inhibit cotyledon separation in the light. We show that the lincomycin-induced phenotype partly requires a functioning ET signaling pathway, but could not detect increased ET emissions in response to lincomycin treatment. The two treatments show overlap in up-regulated gene transcripts, downstream of transcription factors ETHYLENE INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1). The induction of the ethylene signaling pathway is triggered by an unknown retrograde signal acting independently of GENOMES UNCOUPLED1 (GUN1). Our data show how two apparently different stress responses converge to optimize photomorphogenesis.One Sentence SummaryChloroplast retrograde signaling targets the ethylene-regulated gene network to repress photomorphogenesis in Arabidopsis


2020 ◽  
Vol 21 (17) ◽  
pp. 6102
Author(s):  
Galia Maik-Rachline ◽  
Lucia Lifshits ◽  
Rony Seger

The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ′s substrates, concentrating mainly on the nuclear targets and their role in p38α/b functions. Finally, we also provide information on the mechanisms of nuclear p38α/b translocation and its use as a therapeutic target for p38α/β-dependent diseases.


Sign in / Sign up

Export Citation Format

Share Document