Microbial Community of Umkhei Thermal Lake (Baikal Rift Zone) in the Groundwater Discharge Zone

2019 ◽  
Vol 12 (6) ◽  
pp. 584-593 ◽  
Author(s):  
E. V. Lavrentyeva ◽  
T. G. Banzaraktsaeva ◽  
A. A. Radnagurueva ◽  
S. P. Buryukhaev ◽  
V. B. Dambaev ◽  
...  
2017 ◽  
Author(s):  
Svetlana V. Zaitseva ◽  
Elena V. Lavrentieva ◽  
Aryuna A. Radnagurueva ◽  
Olga A. Baturina ◽  
Marsel R. Kabilov ◽  
...  

Alkaline hot springs are unique extreme habitats resemble the early Earth and present a valuable resource for the discovery of procaryotic community diversity and isolation of the novel thermophilic Bacteria and Archaea. One of the model for the possible origin of biochemistry in alkaline hot springs revealed the acetyl-CoA pathway of CO2 fixation might be the most ancient form of carbon metabolism. Recent phylogenetic studies have suggested that the phylum Acetothermia is one of the deep branches of the Bacteria domain. Firstly Acetothermia (Candidate division OP1) was characterized in a culture independent molecular phylogenetic survey based on the 16S rRNA gene of the sulfide-rich hot spring, Obsidian Pool, a 75 to 95oC hot spring. Two nearly complete genomes of Acetothermia were established based on genome-resolved metagenomic analysis and its capability of implementing acetogenesis through the ancient reductive acetyl-CoA pathway by utilizing CO2 and H2 was revealed. Although genomic, proteomic and metagenomic approaches investigate basic metabolism and potentional energy conservation of uncultivated candidate phyla but ecological roles of these bacteria and general patterns of diversity and community structure stay unclear. General hydrochemical and geological characterization of alkaline thermal springs of the Baikal Rift zone with high silica concentrations and a nitrogen dominated gas phase is provided. Previous microbiogical studies based on culture-dependent methods recovered a large number of bacterial strains from thermal springs located in Baikal Rift zone. We combined microbial communities analysis by using high-throughput 16S rRNA gene sequencing, biogeochemical measurements, sediment mineralogy and physicochemical characteristics to investigate ecosystems of alkaline hot springs located in the Baikal Rift zone. Uncultivated bacteria belonging to the phylum Acetothermia, along with members of the phyla Firmicutes and Proteobacteria, were identified as the dominant group in hydrothermal sediments communities in the alkaline hot springs of Baikal Rift zone. In bottom sediments of the Alla hot spring, about 57% of all classified sequences represent this phylum. Geochemistry of fluids and sample type were strongly correlated with microbial community composition. The Acetothermia exhibited the highest relative abundance in sediment microbial community associated with alkaline thermal fluids enriched in Fe, Zn, Ni, Al and Cr.


2021 ◽  
Vol 908 (1) ◽  
pp. 012001
Author(s):  
D D Barkhutova ◽  
S P Buryukhaev ◽  
V B Dambaev ◽  
D D Tsyrenova ◽  
E V Lavrentyeva

Abstract The Baikal Rift Zone hosts many hot springs with a wide range of temperature and physical-chemical conditions, which may harbour different niches for the distribution of microbial communities. We investigated microbial community composition and their functional activity in two alkaline hot springs with a temperature range of 34.4 to 73.6°C. Comparative analysis of the composition of the dominant taxa showed significant differences depending on the collection sites. In the community of high-temperature zones with a water temperature of 55-64°C, a high proportion of thermophilic bacteria Acetothermia (up to 57.9%), Deinococcus-Thermus (up to 50%), and Aquificae (up to 10.8%). Proteobacteria (29-77%) and Firmicutes (15-26%) dominate in the sulphide-free Garga spring (73-75°C). The functional analysis of the microbial community showed that the primary producers are cyanobacteria, anoxygenic phototrophs, and chemolithotrophic bacteria. At the terminal stages of the mineralization of organic matter, sulphate-reducing bacteria are the main destructors in the microbial communities in hot springs. The cyano-bacterial and sulfidogenic microbial communities play an important role in the formation of geochemical barriers and mineral formation.


Author(s):  
Svetlana V. Zaitseva ◽  
Elena V. Lavrentieva ◽  
Aryuna A. Radnagurueva ◽  
Olga A. Baturina ◽  
Marsel R. Kabilov ◽  
...  

Alkaline hot springs are unique extreme habitats resemble the early Earth and present a valuable resource for the discovery of procaryotic community diversity and isolation of the novel thermophilic Bacteria and Archaea. One of the model for the possible origin of biochemistry in alkaline hot springs revealed the acetyl-CoA pathway of CO2 fixation might be the most ancient form of carbon metabolism. Recent phylogenetic studies have suggested that the phylum Acetothermia is one of the deep branches of the Bacteria domain. Firstly Acetothermia (Candidate division OP1) was characterized in a culture independent molecular phylogenetic survey based on the 16S rRNA gene of the sulfide-rich hot spring, Obsidian Pool, a 75 to 95oC hot spring. Two nearly complete genomes of Acetothermia were established based on genome-resolved metagenomic analysis and its capability of implementing acetogenesis through the ancient reductive acetyl-CoA pathway by utilizing CO2 and H2 was revealed. Although genomic, proteomic and metagenomic approaches investigate basic metabolism and potentional energy conservation of uncultivated candidate phyla but ecological roles of these bacteria and general patterns of diversity and community structure stay unclear. General hydrochemical and geological characterization of alkaline thermal springs of the Baikal Rift zone with high silica concentrations and a nitrogen dominated gas phase is provided. Previous microbiogical studies based on culture-dependent methods recovered a large number of bacterial strains from thermal springs located in Baikal Rift zone. We combined microbial communities analysis by using high-throughput 16S rRNA gene sequencing, biogeochemical measurements, sediment mineralogy and physicochemical characteristics to investigate ecosystems of alkaline hot springs located in the Baikal Rift zone. Uncultivated bacteria belonging to the phylum Acetothermia, along with members of the phyla Firmicutes and Proteobacteria, were identified as the dominant group in hydrothermal sediments communities in the alkaline hot springs of Baikal Rift zone. In bottom sediments of the Alla hot spring, about 57% of all classified sequences represent this phylum. Geochemistry of fluids and sample type were strongly correlated with microbial community composition. The Acetothermia exhibited the highest relative abundance in sediment microbial community associated with alkaline thermal fluids enriched in Fe, Zn, Ni, Al and Cr.


2021 ◽  
Vol 12 (3) ◽  
pp. 544-562
Author(s):  
E. G. Vologina ◽  
M. Sturm ◽  
Ya. B. Radziminovich

Sedimentation in Lake Baikal is significantly affected by continuous seismic activity in the Baikal Rift Zone. Our study shows that historical earthquakes, as well as recent seismic events, considerably influenced sedimentation in this deep tectonic basin. Here we present some of the results of extensive international research activities during the period of 1996–2019. To identify traces of seismic events in the uppermost sediments (<1.5 m), short cores were recovered from many coring stations throughout the entire lake. Based on lithological descriptions, measurements of magnetic susceptibility, and concentration of inorganic and organic components, we identified earthquake indicators in the sediment cores. Impacts of historical earthquakes were traced within South Baikal (near the Sharyzhalgai Station and the Station 106-km of the Circum-Baikal railway, hereafter CBR) and Proval Bay (near the Selenga River delta).


2012 ◽  
Vol 48 (4) ◽  
pp. 354-362 ◽  
Author(s):  
B. G. Gavrilov ◽  
Yu. I. Zetzer ◽  
V. I. Kurkin ◽  
I. E. Markovich ◽  
Yu. V. Poklad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document