scholarly journals Distribution of Acetothermia-dominated microbial communities in alkaline hot springs of Baikal Rift Zone.

Author(s):  
Svetlana V. Zaitseva ◽  
Elena V. Lavrentieva ◽  
Aryuna A. Radnagurueva ◽  
Olga A. Baturina ◽  
Marsel R. Kabilov ◽  
...  

Alkaline hot springs are unique extreme habitats resemble the early Earth and present a valuable resource for the discovery of procaryotic community diversity and isolation of the novel thermophilic Bacteria and Archaea. One of the model for the possible origin of biochemistry in alkaline hot springs revealed the acetyl-CoA pathway of CO2 fixation might be the most ancient form of carbon metabolism. Recent phylogenetic studies have suggested that the phylum Acetothermia is one of the deep branches of the Bacteria domain. Firstly Acetothermia (Candidate division OP1) was characterized in a culture independent molecular phylogenetic survey based on the 16S rRNA gene of the sulfide-rich hot spring, Obsidian Pool, a 75 to 95oC hot spring. Two nearly complete genomes of Acetothermia were established based on genome-resolved metagenomic analysis and its capability of implementing acetogenesis through the ancient reductive acetyl-CoA pathway by utilizing CO2 and H2 was revealed. Although genomic, proteomic and metagenomic approaches investigate basic metabolism and potentional energy conservation of uncultivated candidate phyla but ecological roles of these bacteria and general patterns of diversity and community structure stay unclear. General hydrochemical and geological characterization of alkaline thermal springs of the Baikal Rift zone with high silica concentrations and a nitrogen dominated gas phase is provided. Previous microbiogical studies based on culture-dependent methods recovered a large number of bacterial strains from thermal springs located in Baikal Rift zone. We combined microbial communities analysis by using high-throughput 16S rRNA gene sequencing, biogeochemical measurements, sediment mineralogy and physicochemical characteristics to investigate ecosystems of alkaline hot springs located in the Baikal Rift zone. Uncultivated bacteria belonging to the phylum Acetothermia, along with members of the phyla Firmicutes and Proteobacteria, were identified as the dominant group in hydrothermal sediments communities in the alkaline hot springs of Baikal Rift zone. In bottom sediments of the Alla hot spring, about 57% of all classified sequences represent this phylum. Geochemistry of fluids and sample type were strongly correlated with microbial community composition. The Acetothermia exhibited the highest relative abundance in sediment microbial community associated with alkaline thermal fluids enriched in Fe, Zn, Ni, Al and Cr.


Author(s):  
Svetlana V. Zaitseva ◽  
Elena V. Lavrentieva ◽  
Aryuna A. Radnagurueva ◽  
Olga A. Baturina ◽  
Marsel R. Kabilov ◽  
...  

Alkaline hot springs are unique extreme habitats resemble the early Earth and present a valuable resource for the discovery of procaryotic community diversity and isolation of the novel thermophilic Bacteria and Archaea. One of the model for the possible origin of biochemistry in alkaline hot springs revealed the acetyl-CoA pathway of CO2 fixation might be the most ancient form of carbon metabolism. Recent phylogenetic studies have suggested that the phylum Acetothermia is one of the deep branches of the Bacteria domain. Firstly Acetothermia (Candidate division OP1) was characterized in a culture independent molecular phylogenetic survey based on the 16S rRNA gene of the sulfide-rich hot spring, Obsidian Pool, a 75 to 95oC hot spring. Two nearly complete genomes of Acetothermia were established based on genome-resolved metagenomic analysis and its capability of implementing acetogenesis through the ancient reductive acetyl-CoA pathway by utilizing CO2 and H2 was revealed. Although genomic, proteomic and metagenomic approaches investigate basic metabolism and potentional energy conservation of uncultivated candidate phyla but ecological roles of these bacteria and general patterns of diversity and community structure stay unclear. General hydrochemical and geological characterization of alkaline thermal springs of the Baikal Rift zone with high silica concentrations and a nitrogen dominated gas phase is provided. Previous microbiogical studies based on culture-dependent methods recovered a large number of bacterial strains from thermal springs located in Baikal Rift zone. We combined microbial communities analysis by using high-throughput 16S rRNA gene sequencing, biogeochemical measurements, sediment mineralogy and physicochemical characteristics to investigate ecosystems of alkaline hot springs located in the Baikal Rift zone. Uncultivated bacteria belonging to the phylum Acetothermia, along with members of the phyla Firmicutes and Proteobacteria, were identified as the dominant group in hydrothermal sediments communities in the alkaline hot springs of Baikal Rift zone. In bottom sediments of the Alla hot spring, about 57% of all classified sequences represent this phylum. Geochemistry of fluids and sample type were strongly correlated with microbial community composition. The Acetothermia exhibited the highest relative abundance in sediment microbial community associated with alkaline thermal fluids enriched in Fe, Zn, Ni, Al and Cr.



2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Alexander Burkert ◽  
Thomas A. Douglas ◽  
Mark P. Waldrop ◽  
Rachel Mackelprang

ABSTRACTPermafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions, such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods, such as metagenomics and 16S rRNA gene sequencing. However, these methods do not distinguish among active, dead, and dormant cells. This is of particular concern in ancient permafrost, where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this, we applied (i) LIVE/DEAD differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19,000, 27,000, and 33,000 years old). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of the classBacilliwere more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of theClostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous “relic” DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provide insights into the survival of microbial communities in ancient permafrost.IMPORTANCEPermafrost soils store more than half of Earth’s soil carbon despite covering ∼15% of the land area (C. Tarnocai et al., Global Biogeochem Cycles 23:GB2023, 2009, https://doi.org/10.1029/2008GB003327). This permafrost carbon is rapidly degraded following a thaw (E. A. G. Schuur et al., Nature 520:171–179, 2015, https://doi.org/10.1038/nature14338). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling postthaw. Permafrost is also an analog for frozen extraterrestrial environments, and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive in permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.



2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Almando Geraldi ◽  
Chia Chay Tay ◽  
Ni’matuzahroh Ni’matuzahroh ◽  
Fatimah FATIMAH ◽  
Wan Nurhayati Wan Hanafi

Abstract. Geraldi A, Tay CC, Ni’matuzahroh, Fatimah, Hanafi WNW. 2021. Unraveling the bacterial diversity of Cangar Hot Spring, Indonesia by Next Generation Sequencing of 16S rRNA gene. Biodiversitas 22: 4060-4066. This study is the first attempt at using the Next Generation Sequencing (NGS) method with 16S rRNA to understand the bacterial community structure in an Indonesian hot spring. This study aims to unravel the bacterial diversity of the Cangar Hot Spring as one of the most explored natural hot springs in East Java, Indonesia. We found Proteobacteria and Bacteroidetes as the two most abundant phyla. We discovered the first occurrence of genera Cloacibacterium and Methylobacillus in the hot spring ecosystem, which was the most dominant genera at Cangar Hot Spring. We also found several potential bacteria for bioindustry and bioremediation, such as Acinetobacter junii and Pseudomonas alcaligenes. Besides that, we also observed opportunistic pathogens from genera Comamonas and Vogesella. This study result will provide valuable information for further bioprospecting of bacteria with commercial potential and the development of health and safety measures in the Cangar Hot Spring, among others. Hopefully, this report would encourage the use of NGS technology for studying other hot springs in Indonesia.



2018 ◽  
Author(s):  
Alexandra Perras ◽  
Kaisa Koskinen ◽  
Maximilian Mora ◽  
Michael Beck ◽  
Lisa Wink ◽  
...  

AbstractThe gut microbiome is strongly interwoven with human health. Conventional gut microbiome analysis generally involves 16S rRNA gene targeting next generation sequencing (NGS) of stool microbial communities, and correlation of results with clinical parameters. However, some microorganisms may not be alive at the time of sampling, and thus their impact on the human health is potentially less significant. As conventional NGS methods do not differentiate between viable and dead microbial components, retrieved results provide only limited information.Propidium monoazide (PMA) is frequently used in food safety monitoring and other disciplines to discriminate living from dead cells. PMA binds to free DNA and masks it for subsequent procedures. In this article we show the impact of PMA on the results of 16S rRNA gene-targeting NGS from human stool samples and validate the optimal applicable concentration to achieve a reliable detection of the living microbial communities.Fresh stool samples were treated with a concentration series of zero to 300 μM PMA, and were subsequently subjected to amplicon-based NGS. The results indicate that a substantial proportion of the human microbial community is not intact at the time of sampling. PMA treatment significantly reduced the diversity and richness of the sample depending on the concentration and impacted the relative abundance of certain important microorganisms (e.g. Akkermansia, Bacteroides). Overall, we found that a concentration of 100 μM PMA was sufficient to quench signals from disrupted microbial cells.The optimized protocol proposed here can be easily implemented in classical microbiome analyses, and helps to retrieve an improved and less blurry picture of the microbial community composition by excluding signals from background DNA.



2021 ◽  
Vol 908 (1) ◽  
pp. 012001
Author(s):  
D D Barkhutova ◽  
S P Buryukhaev ◽  
V B Dambaev ◽  
D D Tsyrenova ◽  
E V Lavrentyeva

Abstract The Baikal Rift Zone hosts many hot springs with a wide range of temperature and physical-chemical conditions, which may harbour different niches for the distribution of microbial communities. We investigated microbial community composition and their functional activity in two alkaline hot springs with a temperature range of 34.4 to 73.6°C. Comparative analysis of the composition of the dominant taxa showed significant differences depending on the collection sites. In the community of high-temperature zones with a water temperature of 55-64°C, a high proportion of thermophilic bacteria Acetothermia (up to 57.9%), Deinococcus-Thermus (up to 50%), and Aquificae (up to 10.8%). Proteobacteria (29-77%) and Firmicutes (15-26%) dominate in the sulphide-free Garga spring (73-75°C). The functional analysis of the microbial community showed that the primary producers are cyanobacteria, anoxygenic phototrophs, and chemolithotrophic bacteria. At the terminal stages of the mineralization of organic matter, sulphate-reducing bacteria are the main destructors in the microbial communities in hot springs. The cyano-bacterial and sulfidogenic microbial communities play an important role in the formation of geochemical barriers and mineral formation.



2008 ◽  
Vol 74 (20) ◽  
pp. 6223-6229 ◽  
Author(s):  
Koji Mori ◽  
Michinari Sunamura ◽  
Katsunori Yanagawa ◽  
Jun-ichiro Ishibashi ◽  
Youko Miyoshi ◽  
...  

ABSTRACT The phylogenetic group termed OP5 was originally discovered in the Yellowstone National Park hot spring and proposed as an uncultured phylum; the group was afterwards analyzed by applying culture-independent approaches. Recently, a novel thermophilic chemoheterotrophic filamentous bacterium was obtained from a hot spring in Japan that was enriched through various isolation procedures. Phylogenetic analyses of the isolate have revealed that it is closely related to the OP5 phylum that has mainly been constructed with the environmental clones retrieved from thermophilic and mesophilic anaerobic environments. It appears that the lineage is independent at the phylum level in the domain Bacteria. Therefore, we designed a primer set for the 16S rRNA gene to specifically target the OP5 phylum and performed quantitative field analysis by using the real-time PCR method. Thus, the 16S rRNA gene of the OP5 phylum was detected in some hot-spring samples with the relative abundance ranging from 0.2% to 1.4% of the prokaryotic organisms detected. The physiology of the above-mentioned isolate and the related environmental clones indicated that they are scavengers contributing to the sulfur cycle in nature.



2017 ◽  
Vol 34 (6) ◽  
pp. 567-576 ◽  
Author(s):  
Rajesh Kumar Sahoo ◽  
Mahendra Gaur ◽  
Aradhana Das ◽  
Archana Singh ◽  
Mohit Kumar ◽  
...  


2018 ◽  
Author(s):  
Alex Burkert ◽  
Thomas A. Douglas ◽  
Mark P. Waldrop ◽  
Rachel Mackelprang

AbstractPermafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods such as metagenomic and 16S rRNA gene sequencing. However, these methods do not distinguish between active, dead, and dormant cells. This is of particular concern in ancient permafrost where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this we applied: (i) live/dead differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19K, 27K, and 33K). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools and how they change over geologic time. We found clear evidence that cells capable of forming endospores are not necessarily dormant and that the propensity to form endospores differed among taxa. Specifically, Bacilli are more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of Clostridia, which are more likely to persist as vegetative cells over geologic timescales. We also found that exogenous DNA preserved within permafrost does not bias DNA sequencing results since its removal did not significantly alter the microbial community composition. These results extend the findings of a previous study that showed permafrost age and ice content largely control microbial community diversity and cell abundances.ImportanceThe study of permafrost transcends the study of climate change and exobiology. Permafrost soils store more than half earth’s soil carbon despite covering ∽15% of the land area (Tarnocai et al 2009). This permafrost carbon is rapidly degraded following thaw (Tarnocai C et al 2009, Schuur et al 2015). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling post thaw. Permafrost is also an analog for frozen extraterrestrial environments and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive permafrost we can focus efforts searching for evidence of life on cryogenic cosmic bodies. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains across geologic timescales.



Coral Reefs ◽  
2020 ◽  
Vol 39 (6) ◽  
pp. 1817-1827
Author(s):  
Alicia M. Reigel ◽  
Sarah M. Owens ◽  
Michael E. Hellberg

AbstractEfforts to study the microbial communities associated with corals can be limited by inefficiencies in the sequencing process due to high levels of host amplification by universal bacterial 16S rRNA gene primers. Here, we develop an inexpensive peptide nucleic acid (PNA) clamp that binds to a target sequence of host DNA during PCR and blocks amplification. We then test the ability of this PNA clamp to mitigate host contamination and increase overall microbial sequence coverage on samples from three coral species: the gorgonians Eunicea flexuosa and Gorgonia ventalina, and the scleractinian Porites panamensis. The 20-bp PNA clamp was designed using DNA from E. flexuosa. Adding the PNA clamp during PCR increased the percentage of microbial reads in E. flexuosa samples more than 11-fold. Microbial community diversity was similar without- and with-PNA clamps, as were the relative frequencies of the ten most abundant ASVs (amplicon sequence variants), indicating that the clamps successfully blocked host DNA amplification while simultaneously increasing microbial DNA amplification proportionally across the most abundant taxa. The reduction of E. flexuosa DNA correlated with an increase in the abundance of rarer taxa. The clamp also increased the average percentage of microbial reads in another gorgonian, G. ventalina, by 8.6-fold without altering the microbial community beta diversity, and in a distantly related scleractinian coral, P. panamensis, by nearly double. The reduction of host contamination correlated with the number of nucleotide mismatches between the host amplicon and the PNA clamp. The PNA clamp costs as little as $0.48 per sample, making it an efficient and cost-effective solution to increase microbial sequence coverage for high-throughput sequencing of coral microbial communities.



Sign in / Sign up

Export Citation Format

Share Document