The mechanism of formation of 2,7-dimethyl-2,6-octadiene in the synthesis of 3-methylene-7-methyl-1,6-octadiene

1983 ◽  
Vol 48 (7) ◽  
pp. 1864-1866
Author(s):  
Jan Bartoň ◽  
Ivan Kmínek

2,7-Dimethyl-2,6-octadiene is formed in the catalytic solution for the dimerization of 2-methyl-1,3-butadiene to β-myrcene (3-methylene-7-methyl-1,6-octadiene), as revealed by mass spectrometry and 13C NMR spectroscopy. Visual observations together with the results of gas chromatographic analysis of the catalytic solution suggest that the formation of 2,7-dimethyl-2,6-octadiene is associated with the transition of the alkali metal (sodium) from the solid phase into the solution. A reaction pathway is suggested accounting for the formation of 2,7-dimethyl-2,6-octadiene in the system.

1993 ◽  
Vol 58 (8) ◽  
pp. 1914-1918 ◽  
Author(s):  
Jaroslav Kříž ◽  
Luděk Taimr

The structure of a new compound formed in the reaction of ethoxyquin with alkylperoxy radicals was resolved by 1H and 13C NMR spectroscopy (including COSY, NOESY, HHC RCT and SSLR INEPT techniques) and confirmed by mass spectrometry. The structure suggest participation of 4-methyl group of ethoxyquin in the deactivation of peroxy radicals. A mechanism of this reaction is proposed.


Sign in / Sign up

Export Citation Format

Share Document