Preparation and polymerization of 3-(2-adamantyl)-3-methyl-2-azetidinone

1985 ◽  
Vol 50 (2) ◽  
pp. 454-458
Author(s):  
Jan Hauer ◽  
Jan Šebenda

3-(2-Adamantyl)-3-methyl-2-azetidinone (VI) was prepared, and new compounds, namely, methyl 2-(2-adamantyl) cyanoacetate, methyl-2-(2-adamantyl)-2-cyanopropanoate and methyl-2-(2-adamantyl)-2-methyl-3-aminopropanoate, were prepared in the course of the synthesis as intermediates. The anionic polymerization of lactam VI gave a polymer which was characterized by intrinsic viscosity, solubility, melting temperature and its IR and 1H NMR spectra. Compared with 3-butyl-3-methyl-2-azetidinone, lactam VI polymerizes much more slowly.

1981 ◽  
Vol 36 (5) ◽  
pp. 571-577 ◽  
Author(s):  
Jochen Ellermann ◽  
Leo Mader ◽  
Kurt Geibel

H2 reacts with [Ir{(Ph2P)2N-p-C6H4CH3}2]Cl · 3 C6H6 (1) to give cis-[Ir(H)2{(Ph2P)2N-p-C6H4CH3}2]Cl · CH2Cl2 (2a). By reaction of 2a with NaBPh4 cis-[Ir(H)2{(Ph2P)2N-p-C6H4CH3}2]BPh4 (2 b) is obtained. Refluxing of 2a in CH2Cl2 yields trans-[lr(H)2{(Ph2P)2N-p-C6H4CH3}2]Cl · 1/2 CH2Cl2 (3a), which undegoes metatheses with NaBPh4 to trans-[Ir(H)2{(Ph2P)2N-p-C6H4CH3}2]BPh4 (3b). 3a is also formed by refluxing of 1 in methanol in the presence of oxygen. Oxidative addition of HCl to 1 and reaction with NaBPh4 yields trans-[Ir(H)(Cl){(Ph2P)2N-p-C6H4CH3}2]BPh4 (4b). The new compounds are characterised by their IR, Raman, 31P{1H} PFT and 1H NMR Spectra


2007 ◽  
Vol 62 (3) ◽  
pp. 397-406 ◽  
Author(s):  
Stephan W. Kohl ◽  
Katharina Kuse ◽  
Markus Hummert ◽  
Herbert Schumann ◽  
Clemens Mügge ◽  
...  

Two improved routes to synthesize 1-benzyl-1,4,7,10-tetraazacyclododecane (6) and 1,4,7,10- tetraazacyclododecane-1-acetic acid ethyl ester (11) are described as well as the synthesis of 1-{2-[4-(maleimido-N-propylacetamidobutyl)amino]-2-oxoethyl}-1,4,7,10-tetraazacyclododecane- 4,7,10-triacetic acid (17) and its Y, Ho, Tm, and Lu complexes. The 1H and 13C NMR spectra of the new compounds as well as the single crystal X-ray structure analyses of the intermediates 4-benzyl-1,7-bis(p-toluenesulfonyl)diethylenetriamine (3) and 1,4,7-tris(p-toluenesulfonyl)diethylenetriamine (7) are reported and discussed. The rare earth complexes of 17 have been characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry.


1981 ◽  
Vol 36 (11) ◽  
pp. 1444-1450 ◽  
Author(s):  
Max Schmidt ◽  
Erich Sametschek

Abstract The first examples of the hitherto unknown 1,2,4-Trithia-3,5-diborolanes with B-O-C-bonds have been synthesized and characterised. The diiodo substituted ring (2) reacts with 2,6-dimethylphenol, to form 3,5-bis-(2,6-dimethylphenyloxi)-1,2,4-trithia-3,5-di-borolane (3) and HI. 3,5-Diethoxi-1,2,4-trithia-3,5-diborolane, 5, and C2H5I are formed via the cleavage of diethylether by 2. From 2 and diisopropylether, the corresponding 3,5-diisopropyloxi-1,2,4-trithia-3,5-diborolane (6) is formed. The unsymmetrical ethers methyl-t-butylether and methylphenylether undergo reactions with 2 resulting in the formation of 3,5-dimethyloxi-1,2,4-trithia-3,5-diborolane (8) (besides t-C4H9I) and 3,5-diphenyloxi-1,2,4-trithia-3,5-diborolane (10) (besides CH3I). The thermal stability of the new compounds is increasing with increasing size of R in the -OR group and from aliphatic to aromatic R in this group. IR, Raman, 1H NMR and 11B NMR spectra of the compounds are reported as well as some physical and chemical properties.


1979 ◽  
Vol 34 (6) ◽  
pp. 799-804 ◽  
Author(s):  
Jochen Eilermann ◽  
Helmut A. Lindner

[Mn(CO)3(R2PCH2)3CCH3]ClO4 (1a) (R = C6H5) reacts with NaBH4 on UV irradiation to yield HMn(CO)2(R2PCH2)3CCH3 (2a). [Mn(CO)3(R2PCH2)3CCH3]BR4 (1b) gives only decomposition products. Boiling of 1a or b and NaOH in acetone/water does nots give 2a but the new hydride HMn(CO)3(R2PCH2)2C(CH3)CH2PR2 (3a). This compound cannot be prepared on ultraviolet irradiation of a solution of 1a or b and NaBH4 in methyl alcohol or acetone. The analogous deutendes DMn(CO)2(R2)PCH2)3CCH3 (2b) and DMn(CO)3(R2PCH2)2C(CH3)CH2PR2 (3b) were also prepared. The new compounds were characterized by their IR, Raman, 1H NMR and 31P NMR spectra.


1971 ◽  
Vol 26 (9) ◽  
pp. 872-874 ◽  
Author(s):  
Fritz Vögtle ◽  
Rainer Lichtenthaler

The synthesis of a series of new heterocyclic [3.3] metacyclophanes has been carried out. The 1H-NMR-spectra of the new compounds have been studied with regard to configurational problems and conformational mobility.


1998 ◽  
Vol 63 (5) ◽  
pp. 681-697 ◽  
Author(s):  
Pavel Pihera ◽  
Jaroslav Paleček ◽  
Jiří Svoboda
Keyword(s):  
H Nmr ◽  

[1]Benzothieno[3,2-b]furan reacts with substituted dienes 2 as a dienophile under formation of substituted tetrahydro[1]benzothieno[3,2-b][1]benzofuran derivatives 3-14. The cycloaddition is endo-stereoselective. Aromatization of the products leads to a series of new fused [1]benzothieno[3,2-b][1]benzofurans 17-24. The 1H NMR spectra of the new compounds were fully assigned.


1981 ◽  
Vol 46 (8) ◽  
pp. 1913-1929 ◽  
Author(s):  
Bohdan Schneider ◽  
Pavel Sedláček ◽  
Jan Štokr ◽  
Danica Doskočilová ◽  
Jan Lövy

It was found that three crystalline forms of ethylene glycol dibenzoate can be prepared. Infrared and Raman spectra of these three forms, as well as of the glassy and liquid states, were measured. From 3JHH coupling constants obtained by analysis of the 13C satellite band of the -CH2- group in 1H NMR spectra, and from the 3JCH coupling constants of the -CO.O.CH2- fragment obtained by analysis of the carbonyl band in 13C NMR spectra it was found that in the liquid state the -CH2-CH2- group exists predominantly in the gauche conformational structure, and the bonds C-O-C-C assume predominantly a trans orientation. The results of the analysis of NMR and vibrational spectra were used for the structural interpretation of conformationally sensitive bands in vibrational spectra of ethylene glycol dibenzoate.


1981 ◽  
Vol 46 (4) ◽  
pp. 917-925 ◽  
Author(s):  
Vladimír Pouzar ◽  
Miroslav Havel

Reaction of the aldehyde I with the lithium salt of 1-(2-tetrahydropyranyloxy)-2-propyne yielded the compounds II and IV. From the compound II the lactone XII was prepared via the intermediates III and X, the lactone XVIII was prepared from the substance IV via the intermediates V and XVI. The unsaturated lactones XII and XVIII were also prepared by sulfenylation and dehydrosulfenylation of the saturated lactones XIII and XIX. Based on chemical correlation and 1H-NMR spectra analyses of the compounds II and IV, the lactone XII was assigned the 20R-configuration whereas the lactone XVIII was allotted the 20S-configuration.


1986 ◽  
Vol 51 (3) ◽  
pp. 573-580 ◽  
Author(s):  
Tibor Gracza ◽  
Zdeněk Arnold ◽  
Jaroslav Kováč

4-Arilidene-5-(N,N-dimethyliminium)-2-(4,5-dihydrofurfurylidene)-N,N-dimethyliminium bisperchlorate I undergoes a 1,4-addition reaction with organic bases under re-formation of the furan nucleus; this behaviour has been utilized in the preparation of new 4-substituted 5-(N,N-dimethylamino)-2-furancarbaldehydes II, III. The structure of the prepared compounds has been confirmed by 13C and 1H NMR spectra.


1981 ◽  
Vol 46 (10) ◽  
pp. 2345-2353 ◽  
Author(s):  
Karel Baše ◽  
Bohumil Štíbr ◽  
Jiří Dolanský ◽  
Josef Duben

The 6-N(CH3)3-6-CB9H11 carbaborane reacts with sodium in liquid ammonia with the formation of 6-CB9H12- which was used as a starting compound for preparing the 4-CB8H14, 9-L-6-CB9H13 (L = (CH3)2S, CH3CN and P(C6H5)3), 1-(η5-C5H5)-1,2-FeCB9H10-, and 2,3-(η5-C5H5)2-2,31-Co2CB9H10- carboranes. The 4-CB8H14 compound was dehydrogenated at 623 K to give 4-(7)-CB8H12 carborane. Base degradation of 6-N(CH3)3-6-CB9H11 in methanol resulted in the formation of 3,4-μ-N(CH3)3CH-B5H10. The structure of all compounds was proposed on the basis of their 11B and 1H NMR spectra and X-ray diffraction was used in the case of the transition metal complexes.


Sign in / Sign up

Export Citation Format

Share Document