The crystal and molecular structure of 4-phosphonomethyl-2-oxo-1-piperazinylacetic acid

1989 ◽  
Vol 54 (1) ◽  
pp. 160-165 ◽  
Author(s):  
František Pavelčík ◽  
Karol Havetta ◽  
Jaroslav Páterek

The structure of the title compound was determined by the method of X-ray diffraction of single crystals. The substance crystallizes in the P21/c monoclinic space group. The structure was refined by the least squares method to R = 0.044 on the basis of 2 076 observed reflections. It was found that this compound is not a dicarboxylic acid but rather an intramolecularly cyclized lactam. The hydrogen phosphonato functional group participates in the betain form, while the carboxyl group is not ionized. The conformation of the six-membered oxopiperazine ring is similar to that of cyclohexane in which the peptidic group plays a similar role to the double bond.

1986 ◽  
Vol 51 (11) ◽  
pp. 2521-2527 ◽  
Author(s):  
Jan Lokaj ◽  
Eleonóra Kellö ◽  
Viktor Kettmann ◽  
Viktor Vrábel ◽  
Vladimír Rattay

The crystal and molecular structure of SnBu2(pmdtc)2 has been solved by X-ray diffraction methods and refined by a block-diagonal least-squares procedure to R = 0.083 for 895 observed reflections. Monoclinic, space group C2, a = 19.893(6), b = 7.773(8), c = 12.947(8) . 10-10 m, β = 129.07(5)°, Z = 2, C20H38N2S4Sn. Measured and calculated densities are Dm = 1.38(2), Dc = 1.36 Mg m-3. Sn atom, placed on the twofold axes, is coordinated with four S atoms in the distances Sn-S 2.966(6) and 2.476(3) . 10-10 m. Coordination polyhedron is a strongly distorted octahedron. Ligand S2CN is planar.


1992 ◽  
Vol 70 (3) ◽  
pp. 809-816 ◽  
Author(s):  
Brigitte Duthu ◽  
Karim El Abed ◽  
Douraid Houalla ◽  
Robert Wolf ◽  
Joël Jaud

The sulfuration of the tricyclic organophosphorous dimer 2 leads easily to the dithiotricyclic derivative 3, which has been characterized by 31P, 1H, and 13C NMR, elemental analysis, and mass spectroscopy. Its crystal and molecular structure has been established by X-ray diffraction and compared to that of 2, which was previously determined. The comparative analysis of X-ray diffraction and NMR parameters gives accurate information about the molecular structure of both compounds. A numerical value of the anistropy cone of the P=S double bond is proposed. Keywords: phosphecine, NMR, X-ray, tricycle.


1975 ◽  
Vol 53 (22) ◽  
pp. 3383-3387 ◽  
Author(s):  
Joseph Hubert ◽  
André L. Beauchamp ◽  
Roland Rivest

The crystal and molecular structure of dithiocyanato(triphenylarsine)mercury(II) has been determined from X-ray diffraction data. The crystals are monoclinic, space group P21/c, with a = 10.290(7), b = 21.199(23), c = 10.719(7) Å, β = 112.00(2)°, and Z = 4. The structure has been solved by the heavy-atom method and refined by block-diagonal least-squares calculations. The agreement factor R obtained for 2607 'observed' reflections is 0.030. The crystal consists of single molecules. The 'characteristic' coordination number of mercury is three, with two sulfur and one arsenic atoms at the apexes of a triangle. The nitrogen atoms of the thiocyanate groups are at 2.67 and 2.74 Å from the adjoining mercury atoms and therefore link the different molecules together.


1979 ◽  
Vol 57 (2) ◽  
pp. 174-179 ◽  
Author(s):  
A. Wallace Cordes ◽  
Paul F. Schubert ◽  
Richard T. Oakley

The crystal structure of 1,4-diphenyl-2,2′,3,3′,5,5′,6,6′-octamethylcyclo-1,4-diphospha-2,3,5,6-tetrasilahexane, (PhPSi2Me4)2, has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P21/c, with a = 9.866(1), b = 11.921(1), and c = 11.324(2) Å, β = 104.31(1)°, Z = 2, and ρcalcd = 1.15 g/cm3. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.060 and Rw of 0.078, for 1173 reflections with intensities greater than 3σ. The (PhPSi2Me4)2 molecule lies on a crystallographic centre of symmetry, and the six-membered P2Si4 ring has a chair conformation with equatorial phenyl groups. The endocyclic angles at P (104.4(1)°) and Si (104.9(2)°) are intermediate between those found in cyclic hexaphosphine and hexasilane molecules, and the Si—Si and P—Si distances of 2.345(3) and 2.252(4) Å, respectively, correspond to single bond lengths, with no appreciable evidence for secondary pπ → dπ bonding between phosphorus and silicon. The Si—C (1.867(8) Å) and P—C (1.828(7) Å) bond lengths are also normal. The variations in the Si—P—C (101.6(2)°, 108.6(2)°), P—Si—C (range 106.2(3)–120.0(3)°), and Si—Si—C (range 105.8(3)–113.7(3)°) angles indicate that the positions of the exocyclic methyl and phenyl groups are influenced by both intra- and intermolecular steric forces.


1997 ◽  
Vol 75 (5) ◽  
pp. 475-482 ◽  
Author(s):  
Wei Xu ◽  
Alan J. Lough ◽  
Robert H. Morris

New amineruthenium and amineiridium hydride derivatives have been synthesized and characterized with the objective of observing intramolecular [Formula: see text] or [Formula: see text] interactions. These include RuHCl(CO)(L)(PPri3)2 (1a, L = NH2NH2; 1b, L = NH3) and IrCl2(L)(H)(PCy3)2 (2a, L = SC(NH2)2; 2b, L = NH3; 2c, L = NH2NH2; 2d, L = NH2(CH2)3NH2; 2e, L = NH2OH). Instead, weak [Formula: see text] van der Waals contacts have been detected in the solid state by X-ray analysis and in solution by NMR T1 measurements and nOe techniques. Both X-ray crystal structure analysis and minimum T1 measurements indicate that the [Formula: see text] distances in the [Formula: see text] interactions are ca•2.0–2.2 Å. The weak interactions might influence the course of deuteration of these complexes under D2 gas. The crystal and molecular structure of IrCl2(NH3)(H)(PCy3)22a has been determined by X-ray diffraction at 173 K: monoclinic, space group P21/n, a = 14.859(2) Å, b = 18.579(3) Å, c = 18.548(3) Å, β = 97.29(1)°, V = 5079.1(13) Å3, Z = 4, full-matrix least-squares refinement on F2 for 10 953 independent reflections; R[F2 > 4σ(F2)] = 0.0283, wR(F2) = 0.0704. Keywords: ruthenium, iridium, hydride, dihydrogen, complexes, hydrogen bond, NMR, X-ray.


1989 ◽  
Vol 44 (1) ◽  
pp. 5-8
Author(s):  
Michel Mégnamisi-Bélombé

Abstract trans-Dichloro(ethanedial-dioximato)(ethanediaI-dioxime)rhodium (III), RhCl2(GH)(GH2), has been synthesized and its structure determined by single crystal X-ray diffraction at room temperature. C4H7Cl2N4O4Rh, Mr = 348.94. monoclinic space group P21/ɑ; a = 10.543(3), b = 8.363(2), c = 11.512(3)Å ; β = 92.79(2)°; V = 1024Å3; Z = 4; Dc = 2.26 Mg m-3. Final Rw = 0.075 for 2035 reflections and 139 parameters. The coordination geometry around Rh is a dis­torted (4+2) octahedron, with four chelating N atoms lying in the equatorial plane and the two Cl atoms in the apical positions. The H atoms of the oxime groups are involved in relatively weak intramolecular O-H-O bridgings, as well as in very strong intermolecular bridgings which extend throughout the crystal structure and propagate nearly parallel to the [101] crystallographic direction.


1987 ◽  
Vol 65 (6) ◽  
pp. 1322-1326 ◽  
Author(s):  
Hong Wang ◽  
Richard J. Barton ◽  
Beverly E. Robertson ◽  
John A. Weil ◽  
Keith C. Brown

The crystal structure of 9-(2,4,6-trinitroanilino)-carbazole, C18H11N5O6, has been determined by X-ray diffraction. Crystals are monoclinic, space group P21/c, a = 14.686(11), b = 24.601(12), c = 10.047(5) Å, β = 107.76(5)° at 292 K, with Z = 8. The two nitrogen atoms in the central fragment have a staggered conformation with an N—N distance of 1.381(4) Å, which is considerably shorter than N—N distances in related N-picrylhydrazine molecules. The picryl moiety has a geometry similar to that of related N-picrylhydrazine molecules. The title compound contains an [Formula: see text] intramolecular bond to one of the ortho nitro groups on the picryl ring. The carbazole plane of one molecule and the picryl plane of a neighboring molecule overlap to form an infinite linear chain of the form … DhA:DhA … where D represents the carbazole donor, h the linear chain linkage within the molecule, and A represents the picryl acceptor of one molecule. The two interplanar distances between D of one molecule and A of an adjacent molecule are 3.28(13) and 3.34(13) Å, indicating a strong π-molecular interaction.


1972 ◽  
Vol 50 (14) ◽  
pp. 2276-2284 ◽  
Author(s):  
Brian W. Davies ◽  
Richard J. Puddephatt ◽  
Nicholas C. Payne

The crystal and molecular structure of trans-chloromethylbis(trimethylarsine)platinum(II) hexafluorobut-2-yne has been determined from three dimensional X-ray diffraction data recorded by diffractometric methods. The structure has been refined by full-matrix least-squares methods on F using 1156 reflections to an agreement factor R = 0.077. The crystals are monoclinic, space group [Formula: see text] with a = 6.803(8), b = 14.93(2), c = 20.20(2) Å, β = 104.9(1)°, and Z = 4. The coordination of the platinum atom is trigonal bipyramidal, with the acetylene considered a monodentate ligand, and the two trimethylarsine ligands occupying the equatorial plane. The chlorine atom and the methyl ligand occupy the apical positions, with Pt—Cl and Pt—C distances of 2.47(1) Å and 2.10(4) Å, respectively. The long Pt—Cl bond length indicates the strong trans-influence of the methyl ligand. The observed C—C bond length of 1.32(4) Å in the acetylene ligand is lengthened from the value of 1.22(9) Å measured in the free ligand. The geometry of the coordinated ligand is discussed in terms of the bonding scheme proposed by Greaves etal.


1977 ◽  
Vol 30 (5) ◽  
pp. 1007 ◽  
Author(s):  
GR Scollary

A structural analysis of the platinum-silatrane complex, PtCl [Si(OCH2CH2)3N] [PMe2Ph]2, has been carried out by X-ray diffraction. Crystals are monoclinic, space group P21/c, a 6.630(4), b 17.465(6), c 22.297(6) Ǻ, β 97.4(2)�, Z 4. The structure has been refined by a full- matrix least-squares procedure to R 0.048 for 2165 reflections. Basic geometries are square (platinum), tetrahedral (silicon) and trigonal (nitrogen). Within the silatrane ligand, the Si-N non-bonding distance is 2.89(1) Ǻ.


1989 ◽  
Vol 67 (1) ◽  
pp. 48-53 ◽  
Author(s):  
David Eric Berry ◽  
Jane Browning ◽  
Gordon William Bushnell ◽  
Keith Roger Dixon ◽  
Alan Pidcock

Reaction of "cyclamphosphorane" (cyclamPH) with [Pt2Cl4(PEt3)2] yields [PtCl(PEt3)(cyclamPH)]Cl. The complex crystallizes as a dichloromethane solvate in the monoclinic space group P21/n, with a = 13.877(3), b = 23.231(7), c = 8.295(2)Å, β = 91.86(4)°, and an X-ray diffraction study shows square planar platinum coordination in which the labile proton of cyclamPH has transferred from phosphorus to nitrogen and the ligand is attached via simple [Formula: see text] chelation. The phosphorus is trans to chlorine in the platinum coordination plane.The corresponding product, trans-[PtCl2(PEt3)(cyclenPH2)]Cl, derived from reaction of "cyclenphosphorane" (cyclenPH) with [Pt2Cl4(PEt3)2], is shown by NMR studies to have a quite different structure in which the ligand is protonated at two nitrogen sites but not at phosphorus. The phosphorus is pentacoordinate with four attachments to nitrogen atoms and one to platinum. The two chlorine atoms are mutually trans in the platinum coordination plane. Keywords: crystal structure, cyclenphosphorane reaction, cyclamphosphorane reaction, X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document