Kinetic Study of Alkaline Hydrolysis of Substituted Phenyl Tosylates. XXII. Variation of Ortho Substituent Effect with Solvent

2005 ◽  
Vol 70 (2) ◽  
pp. 198-222 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Marika Lepp ◽  
Vahur Mäemets ◽  
Ilmar Koppel

The second-order rate constants k (dm3 mol-1 s-1) for the alkaline hydrolysis of meta-, para-, and ortho-substituted phenyl tosylates 4-CH3C6H4SO2OC6H4-X in aqueous 0.5 M Bu4NBr have been measured spectrophotometrically in a wide temperature range. The log k values for ortho-substituted derivatives at various temperatures together with meta- and para-substituted derivatives were analyzed using the modified Fujita-Nishioka equation log km,p,ortho = c0 + c1(m,p,ortho)σ° + c2(ortho)σI + c3(1/T) + c4(m,p,ortho)(1/T)σ° + c5(ortho)(1/T)σI. In order to study the dependence of substituent effects, especially ortho inductive and resonance terms on different solvent parameters, the following equation was used: ∆log km,p,ortho = c0 + c1(m,p,ortho)σ° + c2(ortho)σI + c3∆E + c4∆Y + c5∆P + c6(m,p,ortho)∆Eσ° + + c7(m,p,ortho)∆Yσ° + c8(m,p,ortho)∆Pσ° + c9(ortho)∆EσI + c10(ortho)∆YσI + c11(ortho)∆PσI. ∆log k = log kX - log kH, σ° and σI, are the Taft polar and inductive substituent constants, E, Y and P, are the solvent electrophilicity, polarity and polarizability parameters, respectively. In data treatment ∆E = ES - EH2O, ∆Y = YS - YH2O, ∆P = PS - PH2O were used. The solvent electrophilicity was found to be the main factor responsible for changes in the ortho, para, and meta polar substituent effects with medium. The variation of the ortho inductive term with the solvent electrophilicity ES was found to be twice smaller than that for para substituents, while the ortho resonance term appeared to vary with solvent nearly similarly to that for para substituents. The ortho effect caused by the supplementary inductive effect from ortho position was found to disappear in a solvent whose electrophilic solvating power is comparable to pure DMSO (E ≈ 4).


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1557-1570 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Ilmar A. Koppel

The second-order rate constants k2 (dm3 mol-1 s-1) for the alkaline hydrolysis of substituted alkyl benzoates C6H5CO2R have been measured spectrophotometrically in aqueous 0.5 M Bu4NBr at 50 and 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH, CH2C6H5, CH2CH2Cl, CH2CH2OCH3, CH2CH3) and in aqueous 5.3 M NaClO4 at 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH). The dependence of the alkyl substituent effects on different solvent parameters was studied using the following equations:      ∆ log k = c0 + c1σI + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆EσI + c7∆YσI + c8∆PσI     ∆ log k = c0 + c1σ* + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆Eσ* + c7∆Yσ* + c8∆Pσ* .  ∆ log k = log kR - log kCH3. σI and σ* are the Taft inductive and polar substituent constants. E, Y and P are the solvent electrophilicity, polarity and polarizability parameters, respectively. In the data treatment ∆E = ES - EH2O , ∆Y = YS - YH2O , ∆P = PS - PH2O were used. The solvent electrophilicity, E, was found to be the main factor responsible for changes in alkyl substituent effects with medium. When σI constants were used, variation of the polar term of alkyl substituents with the solvent electrophilicity E was found to be similar to that observed earlier for meta and para substituents, but twice less when σ* constants were used. The steric term for alkyl substituents was approximately independent of the solvent parameters.



2013 ◽  
Vol 11 (12) ◽  
pp. 1964-1975 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Ilmar Koppel

AbstractThe second-order rate constants k for the alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, in aqueous 50.9% acetonitrile have been measured spectrophotometrically at 25°C. The log k values for meta and para derivatives correlated well with the Hammett σm,p substituent constants. The log k values for ortho-substituted phenyl benzoates showed good correlations with the Charton equation, containing the inductive, σI, resonance, σ○ R, and steric, E s B, and Charton υ substituent constants. For ortho derivatives the predicted (log k X)calc values were calculated with equation (log k ortho)calc = (log k H AN)exp + 0.059 + 2.19σI + 0.304σ○ R + 2.79E s B − 0.0164ΔEσI — 0.0854ΔEσ○ R, where DE is the solvent electrophilicity, ΔE = E AN — E H20 = −5.84 for aqueous 50.9% acetonitrile. The predicted (log k X)calc values for phenyl ortho-, meta- and para-substituted benzoates in aqueous 50.9% acetonitrile at 25°C precisely coincided with the experimental log k values determined in the present work.The substituent effects from the benzoyl moiety and aryl moiety were compared by correlating the log k values for the alkaline hydrolysis of phenyl esters of substituted benzoic acids, X-C6H4CO2C6H5, in various media with the corresponding log k values for substituted phenyl benzoates, C6H5CO2C6H4-X.



2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.





2008 ◽  
Vol 63 (9) ◽  
pp. 603-608 ◽  
Author(s):  
Khamis A. Abbas

The rate constants of the hydrolysis of p-substituted benzonitriles with sulfuric acid solutions (18.2 M to 10 M) have been determined spectrophotometrically at (25.1±0.1) °C. It was found that the catalytic activity of sulfuric acid was strongly inhibited by water. The logarithms of the observed rate constants were correlated with different substituent inductive (localized) and resonance (delocalized) constants. The results of the correlation studies indicated that the rate-determining step of the hydrolysis of benzonitriles in 18.2 M sulfuric acid was the addition of a nucleophile, and the hydrolysis was clearly enhanced by the electron-withdrawing inductive effect, while the rate-determining step of the hydrolysis of p-substituted benzonitriles in 10.0 M sulfuric acid was most probably the protonation of benzonitriles, and the rate constants increased by both electron-donating resonance and inductive effects. A mixture of the two mechanisms most probably occurred in 15.3 to 17.0 M sulfuric acid. HSO4 − rather thanwater most probably acted as nucleophile in the hydrolysis of benzonitriles especially at high concentrations of sulfuric acid solutions.



1977 ◽  
Vol 8 (13) ◽  
pp. no-no
Author(s):  
J. FAROOQI ◽  
P. H. GORE ◽  
A. RAHIM


2020 ◽  
Vol 32 (1) ◽  
pp. 179-203 ◽  
Author(s):  
Anna Jezuita ◽  
Krzysztof Ejsmont ◽  
Halina Szatylowicz

AbstractNumerous studies on nitro group properties are associated with its high electron-withdrawing ability, by means of both resonance and inductive effect. The substituent effect of the nitro group may be well described using either traditional substituent constants or characteristics based on quantum chemistry, i.e., cSAR, SESE, and pEDA/sEDA models. Interestingly, the cSAR descriptor allows to describe the electron-attracting properties of the nitro group regardless of the position and the type of system. Analysis of classical and reverse substituent effects of the nitro group in various systems indicates strong pi-electron interactions with electron-donating substituents due to the resonance effect. This significantly affects the pi-electron delocalization of the aromatic ring decreasing the aromatic character, evidenced clearly by HOMA values. Use of the pEDA/sEDA model allows to measure the population of electrons transferred from the ring to the nitro group.





Sign in / Sign up

Export Citation Format

Share Document