solvent parameters
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 2 (24) ◽  
pp. 28-55
Author(s):  
Sokaina Hemdan ◽  
◽  
Asma Al Jebaly ◽  
Fatma Ali

The solvent impact can be decided by Solvent polarity scales, a solvatochromic parameter that has a distinctive position of UV-Visible absorption band within the extend between 250 and 700 nm. The spectral characteristics of Aniline Violet in several solvents at room temperature were analyzed which is that the point of considering the impact of solvents on the absorption spectra of this cationic dye in organic solvent of distinctive characters. The solvent impacts on the wavenumber of the absorption band maxima (max) were talked about utilizing the taking after solvent parameters, refractive index, n, relative permittivity, ε and therefore the empirical solvent polarity ET (30), (*,  and ) and (SA, SB, SP and SPd). The solute–solvent interactions were decided on the premise of multilinear solvation energy relationships concept. The fitting coefficients gotten from this analysis allowed us to estimate the contribution of each type of interactions to the total spectral shifts in solution. The set up dependences between max and the solvent parameters emphasize that the visible band of the examined molecule is influenced by both non-specific and specific solute–solvent interactions. The results appeared the solvent polarizability has major impact on the spectral shift instead of hydrogen bonding accepting ability. Catalan strategy show higher acceptable correlation than Kamlet-Taft methodology and Katritzky methodology. The dissociation constant pKa and the isosbestic point of the explored compound were shown the presence of the individual predominate ionic species was assigned by constructing distribution charts at diverse pH ranges. The results showed that the relative permittivity constant, ε, is important factor affecting on the magnitude of the dissociation constant beside the hydrogen bonding of the solvent.


2021 ◽  
pp. 115880
Author(s):  
Alexander Wankmüller ◽  
Martin Berghold ◽  
Stephan Landgraf

2021 ◽  
Author(s):  
Juliana Vidal ◽  
Stephanie Gallant ◽  
Evan Connors ◽  
Douglas Richards ◽  
Stephanie MacQuarrie ◽  
...  

<div> <div> <div> <div> <p>Liquid-phase exfoliation (LPE) is a process frequently used to overcome the interactions between layers in layered materials to produce small sheets of material, with remarkable properties and high value applications. Materials are prepared via direct or indirect sonication in a solvent that must be able to effectively disperse and stabilize the sheets produced. Unfortunately, the preferred solvents for exfoliation processes are often toxic and possess several health risks. In this work, we show that LPE in greener solvents can be used to access nanostructures of biochar and further improve the applications of this renewable and bio-based material. Herein, pristine and oxidized biochars prepared from hardwood and softwood biomass waste (e.g. sludge, bark, and sawdust) are exfoliated in a range of solvents to allow the identification of benign alternatives that could afford highly concentrated dispersions. The majority of biochar nanostructures produced after exfoliation are stacked nanosheets containing between 2-8 layers (average 15 nm thickness). Correlations between effective LPE of biochar in solvents and different solvent parameters, including Kamlet-Taft, were established and allowed greener solvents to be used. Surface modification of biochars (e.g. via oxidation) has potential to increase their dispersibility in more benign solvents. LPE of oxidized biochars is more efficient in hydrogen-bond accepting solvents due to the increased concentration of carboxylic acid and alcohol functional groups on the surface of particles, when compared to non- functionalized biochars. Dispersions containing 0.20-0.75 mg/mL exfoliated oxidized biochar were obtained in solvents such as polyethylene glycols, glycerol formal and e-caprolactone. Moreover, LPE of pristine biochars in dimethyl carbonate, ethyl acetate, and solketal gave similar yields to more commonly used solvent for this process, N-methyl-2-pyrrolidone (NMP) a known reprotoxic molecule. </p> </div> </div> </div><br></div>


Author(s):  
Hilal Acidereli ◽  
Eda Gokırmak Sogut ◽  
Sibel Demiroglu Mustafov ◽  
Mehmet Gulcan ◽  
Fatih Sen
Keyword(s):  

2020 ◽  
Author(s):  
Juliana Vidal ◽  
Stephanie Gallant ◽  
Douglas Richards ◽  
Stephanie MacQuarrie ◽  
Francesca Kerton

Liquid-phase exfoliation (LPE) is a process frequently used to yield small sheets of layered materials. These materials are prepared via direct or indirect sonication in an ideal solvent, and the sheets produced often present remarkable chemical and physical properties. Unfortunately, the preferred solvents for exfoliation processes are frequently toxic and possess several health risks. In this work, we show the use of LPE in green solvents to access nanostructures of biochar. Biochar is a material produced after thermochemical treatment of biomass residues and it is an important tool for the sequestration of greenhouse gases. Herein, hardwood and softwood biomass residues (e.g. sludge, bark, and sawdust) are used to prepare pristine and oxidized biochars which are then exfoliated in a range of solvents. Stable dispersions containing up to 75% by weight of exfoliated biochar could be obtained. A range of solvents were screened for LPE of biochars to identify ‘green' options that could afford highly concentrated dispersions. The properties of the biochar before and after exfoliation were evaluated using Raman spectroscopy and Transmission Electron Microscopy. Correlations between effective LPE of biochar in a solvent and different solvent parameters were established. For example, LPE of oxidized biochars is more efficient in hydrogen-bond accepting solvents due to the increased concentration of carboxylic acid and alcohol functional groups within this material, when compared with pristine biochars.<div><br></div>


2020 ◽  
Author(s):  
Juliana Vidal ◽  
Stephanie Gallant ◽  
Douglas Richards ◽  
Stephanie MacQuarrie ◽  
Francesca Kerton

Liquid-phase exfoliation (LPE) is a process frequently used to yield small sheets of layered materials. These materials are prepared via direct or indirect sonication in an ideal solvent, and the sheets produced often present remarkable chemical and physical properties. Unfortunately, the preferred solvents for exfoliation processes are frequently toxic and possess several health risks. In this work, we show the use of LPE in green solvents to access nanostructures of biochar. Biochar is a material produced after thermochemical treatment of biomass residues and it is an important tool for the sequestration of greenhouse gases. Herein, hardwood and softwood biomass residues (e.g. sludge, bark, and sawdust) are used to prepare pristine and oxidized biochars which are then exfoliated in a range of solvents. Stable dispersions containing up to 75% by weight of exfoliated biochar could be obtained. A range of solvents were screened for LPE of biochars to identify ‘green' options that could afford highly concentrated dispersions. The properties of the biochar before and after exfoliation were evaluated using Raman spectroscopy and Transmission Electron Microscopy. Correlations between effective LPE of biochar in a solvent and different solvent parameters were established. For example, LPE of oxidized biochars is more efficient in hydrogen-bond accepting solvents due to the increased concentration of carboxylic acid and alcohol functional groups within this material, when compared with pristine biochars.<div><br></div>


2020 ◽  
Author(s):  
Juliana Vidal ◽  
Stephanie Gallant ◽  
Douglas Richards ◽  
Stephanie MacQuarrie ◽  
Francesca Kerton

Liquid-phase exfoliation (LPE) is a process frequently used to yield small sheets of layered materials. These materials are prepared via direct or indirect sonication in an ideal solvent, and the sheets produced often present remarkable chemical and physical properties. Unfortunately, the preferred solvents for exfoliation processes are frequently toxic and possess several health risks. In this work, we show the use of LPE in green solvents to access nanostructures of biochar. Biochar is a material produced after thermochemical treatment of biomass residues and it is an important tool for the sequestration of greenhouse gases. Herein, hardwood and softwood biomass residues (e.g. sludge, bark, and sawdust) are used to prepare pristine and oxidized biochars which are then exfoliated in a range of solvents. Stable dispersions containing up to 75% by weight of exfoliated biochar could be obtained. A range of solvents were screened for LPE of biochars to identify ‘green' options that could afford highly concentrated dispersions. The properties of the biochar before and after exfoliation were evaluated using Raman spectroscopy and Transmission Electron Microscopy. Correlations between effective LPE of biochar in a solvent and different solvent parameters were established. For example, LPE of oxidized biochars is more efficient in hydrogen-bond accepting solvents due to the increased concentration of carboxylic acid and alcohol functional groups within this material, when compared with pristine biochars.<div><br></div>


2019 ◽  
Vol 549 ◽  
pp. 189-200 ◽  
Author(s):  
Huihui Hu ◽  
Nan Chen ◽  
Wei Wei ◽  
Hui Li ◽  
Zhifeng Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document